

A randomized trial comparing seed loss and displacement of AnchorSeed® to standard uncoated loose seeds

David Bowes MD¹, Juanita Crook MD², Cynthia Araujo PhD², Brent Parker BSc², David Kim MD², Miren Gaztanaga MD², Marie-Pierre Milette PhD², Deidre Batchelar PhD², Rasika Rajapakshe PhD², David Petrik MD², Ross Halperin MD²

¹ Nova Scotia Cancer Centre, Halifax, Nova Scotia, Canada

² BC Cancer Agency Centre for the Southern Interior, Kelowna, British Columbia, Canada

Introduction

- Permanent seed brachytherapy is a highly effective treatment for clinically localized prostate cancer
- Some reports suggest improved dosimetric¹ and clinical outcomes² with loose (vs. stranded) seeds
- Loose seed implants may be complicated by:
- Inferior displacement of seeds, which increases dose to membranous urethra and erectile tissues
- $\,\circ\,$ Distant migration to pelvis or lung
- AnchorSeed® (Biocompatibles, Inc., Oxford, CT, USA) was designed to contain the radioactive source within a bioabsorbable synthetic polymer, as is used in strands.
- A retrospective study by Badwan et al³ found less inferior seed displacement with AnchorSeeds® than regular loose seeds (1.5 mm versus 5 mm)
- o Not randomized or blinded
- o Reviewed day 0 images only

Figure 1: AnchorSeed® (Biocompatibles, Inc.) Oxford, CT, USA, previously BrachyScience Inc.) showing the polymer 'anchoring' material composed of 4 rings and 2 longitudinal ribs

Objectives

- To determine if AnchorSeed®, a specially engineered coated seed, will show less displacement or seed loss in the 30 days post implant compared with standard loose seeds
- 2. To determine the effect on prostate dosimetric quantifiers (V100, V150, V200 and D90) and on critical organ doses

Study Design

- 40 patients were randomized and implanted with either uncoated loose seeds or loose AnchorSeeds®.
- Oncologists, patients and all researchers involved were blinded as to seed type until all measurements and analyses were complete.
- Post-implant imaging:
 - o Day 0 pelvic x-ray and CT with catheter
 - o Day 30 pelvic x-ray, pelvic MRI, and CT with catheter

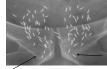


Figure 2: Example of day 30 distal migration of apical seeds. Day 0 on left and Day 30 on right

Methods

- Day 30 MRI and CT were fused using a seed-to-seed match
- Prostate and penile bulb contours were defined from the MRI and urethra was identified by the catheter on CT imaging
- Seed coordinates were determined relative to the center of mass of the seed cloud on the Day 0 and Day 30 CT scans using custom software.

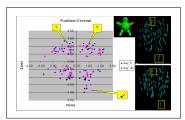


Figure 3: Plot of the superior/inferior seed positions versus the lateral position for Day 0 and Day 30. Custom software (not shown) aided the correlation of seeds by allowing rotation of the images and tagging of seeds

Results

- Superior/inferior displacement from Day 0 to Day 30 was determined for the 6 most superior and 6 inferior seeds with no correction for edema in either arm
- Mean displacement for the inferior seeds:

Regular seeds 0.31 cm (SD 0.35) vs. AnchorSeeds 0.43 cm (SD 0.26), (p < 0.05)

- → AnchorSeeds® stuck with the prostate and apical seeds did not migrate inferiorly, but not a clinically significant difference.
- The number of seeds lost due to distant migration out of the treatment area (for example to the pelvis or lung): 7/1964 vs. 18/1746
 Significantly fewer AnchorSeeds®
 - → Significantly fewer AnchorSeeds® migrated

SEED MIGRATION				
	AnchorSeed®	Loose seed	p value	
Superior seeds	1/122	2/109	0.605	
Inferior seeds	1/124	8/105	0.015	
Total between CT scan times (CT Day 0 – CT Day 30)	7/1964	18/1746	0.09	
Total between implant and Day 0 CT (implanted – CT Day 0)	4/1968	8/1754	0.115	

- No significant difference in Day 30 dosimetry between AnchorSeed® and uncoated loose seeds was found
- A trend was observed towards a higher dose to the hottest 1 cc of penile bulb with AnchorSeed®, but this was not statistically significant

DOSIMETRIC DATA (mean and range)				
	AnchorSeed®	Loose seed	p value	
Prostate volume (cc)	31 (15-63)	32 (20-56)	0.86	
Prostate D _{90%} (%)	122 (100-143)	120 (92-146)	0.69	
Prostate V _{100%} (%)	97 (90-100)	96 (96-100)	0.71	
Prostate V _{150%} (%)	68 (50-86)	66 (50-87)	0.75	
Prostate V _{200%} (%)	34 (18-51)	34 (22-49)	0.92	
Rectum V _{100%} (cc)	0.91 (0-3.26)	0.55 (0-1.46)	0.13	
Urethra V _{150%} (cc)	0.18 (0-0.76)	0.09 (0-0.95)	0.23	
Penile bulb D _{1cc} (Gy)	43 (13-86)	33 (12-63)	0.05	

Conclusions

Coated AnchorSeeds® were found to have a significant anchoring effect which reduced the number of apical seeds that migrated from the pelvis.

References

- 1. Reed DR, Wallner KE, Merrick GS, Arthurs S, et al. A prospective randomized comparison of stranded vs. loose 125I seeds for prostate brachytherapy. Brachytherapy
- 2007;6:129-34.

 2. Hinnen KA, Moerland MA, Battermann JJ, van Roermund JG, et al. Loose seeds versus stranded seeds in I-125 prostate brachytherapy: Differences in clinical outcome. Radiother Oncol 2010;96:30-3.
- 3. Badwan HO, Shanahan AE, Adams MA, Shanahan TG, et al. AnchorSeed for the reduction of source movement in prostate brachytherapy with the Mick applicator implant technique. Brachytherapy 2010;9:23-6.