# Incident Testing for Lynch Syndrome in Colorectal Cancer Under 50 in British Columbia

Nasim Moradi-Monfared Genetic Counselling Student January 2011 Supervisor - Carol Cremin

## **Background**

- Lynch syndrome (HNPCC) is the most common form of inherited colorectal cancer
  - 2-5% of all colorectal cancers
  - High life-time risk of colon and other cancers

| Cancer              | General<br>population<br>risk | HNPCC<br>risk | Mean age of onset |  |
|---------------------|-------------------------------|---------------|-------------------|--|
| Colon               | 6%                            | 80%           | 44 yrs            |  |
| Endometrial         | 3%                            | 20-60%        | 46 yrs            |  |
| Stomach             | ~1%                           | 10-19%        | 56 yrs            |  |
| Ovary               | 2-3%                          | 10-12%        | 42 yrs            |  |
| Hepatobiliary tract | <1%                           | 2-7%          | not reported      |  |
| Urinary tract       | <1%                           | 4-5%          | ~55 yrs           |  |
| Small bowel         | <1%                           | 1-4% 49 yrs   |                   |  |
| Brain/CNS           | <1%                           | 1-3%          | ~50 yrs           |  |

### **Background**

- Underlying mutations in DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2
- Microsatellite instability (MSI) in up to 90% of Lynch colorectal tumors
- Intensive cancer screening and prophylactic surgery shown to reduce incidence and mortality of colorectal cancer and endometrial cancer
- Optimal method of identifying individuals with Lynch syndrome is currently under debate

### **Background**

- Genetic counselling and testing for Lynch syndrome have been available on a clinical basis
  - Amsterdam I or II or revised Bethesda criteria
- Previous work has shown:
  - Overall yield of Lynch mutations differs based on ascertainment method
    - Colorectal cancer <50 years of age was 14% (Hampel et al. 2008)</li>
    - Clinic based approach at BCCA (including individuals with and without cancer) is 3.4% (Cremin et al. 2009)
- Evaluation of Genomic Applications in Practice and Prevention Working Group recommended removal of family history from consideration as a preliminary test in newly diagnosed colorectal cancer (Palomaki et al. 2009)

### Clinical Criteria - Amsterdam

- Amsterdam I
  - ≥3 relatives with colorectal cancer (CRC) plus
  - 2. One affected patient should be a first degree relative of the other two
  - 3. ≥2 successive generations affected
  - 4. At least one case of CRC dx <50
  - 5. FAP excluded
  - 6. Pathology confirmation

- Amsterdam II
  - 1. ≥3 relatives with Lynchassociated cancers plus
  - 2. One affected patient should be a first degree relative of the other two
  - 3. ≥2 successive generations affected
  - 4. One or more cases of CRC dx <50
  - 5. FAP excluded
  - 6. Pathology confirmation

### Clinical Criteria - Bethesda and HCP

### Revised Bethesda

- 1. CRC dx < 50
- 2. Synchronous, metachronous CRC or other Lynch-associated tumor
- 3. CRC <60 with tumor infiltrating lymphocytes, crohn's-like lymphocytic reaction, mucinous/signet-ring differentiation or medullary growth pattern
- CRC dx in patients with ≥1 first degree relative with Lynchassociated tumor with ≥1 dx <50</li>
- 5. CRC dx in patient with ≥2 first or second degree relatives with Lynch-associated tumor regardless of age

#### HCP

- 1. Carrier testing
- 2. Isolated CRC ≤40
- 3. ≥2 HNPCC primaries, one being colon, one dx ≤50
- 4. Amsterdam I
- 5. 2 first degree relatives with HNPCC-related cancers, one being colon, both dx ≤50
- 6. ≥3 HNPCC-related cancers, one being colon, one dx ≤50 and more than one generation affected
- 7. Isolated case CRC ≤50 with MSI-H result

## Lynch syndrome identification in BC

- In BC a combination approach to identify patients at increased risk for Lynch syndrome has been used since June 2008
- Patients identified in two ways:
  - Clinic-based: Referral to the HCP due to personal and/or family history of colorectal and other Lynchrelated cancers
  - Incident-case based: MSI analysis in patients ≤50 diagnosed with colorectal cancer.

### Referral to BCCA vs. HCP

### Referral to BCCA includes referral for

- Oncological consult and care
- Cancer drug therapy
- Radiation therapy
- MSI, IHC, Germline mutation testing
- Referral to HCP

### Referral to HCP

- Appointment with a Geneticist/ Genetic Counsellor due to personal or family cancer history that might indicate an inherited gene mutation
- Further investigation for Lynch syndrome

### **Hypothesis**

Direct referral for MSI analysis on incident colorectal cancer (CRC) ≤50 will generate a different rate of ascertainment of Lynch syndrome than referrals based on Amsterdam and revised Bethesda guidelines.

### What is MSI?

- Microsatellite instability (MSI) refers to difference between the size of microsatellites in DNA from tumor tissue compared to normal tissue from the same person
- A panel of five mononucleotide and dinucleotide markers recommended by National Cancer Institute in 1998 is used in assessing MSI
  - BCCA lab currently uses a panel of 7 markers
- **MSI-high** ≥30% of the markers show instability
- **MSI-low** <30% of the markers show instability
- **MSI-stable** 0% of the markers show instability

### **Data Set**

- Cases of colorectal cancer ≤50 diagnosed between
  June 1, 2008 August 30, 2009 referred to the BC
  Cancer Agency\*
- 169 cases
  - 60 (36%) referred to HCP
  - 91 female
  - 78 male

<sup>\*</sup>An additional 103 non-referred cases were identified from the BC Cancer Registry but are not included in this preliminary report

### Data request specifications

# Some demographic and clinicopathologic information:

- Date of birth
- Date of death
- Sex
- Age at diagnosis
- Tumor site
- TNM stage and grade classification
- Health authority at time of diagnosis
- Referral status to HCP

# Age Distribution (n=169)

Median age at diagnosis - 46

#### Age distribution - HCP group (n=60)

<30 yrs, 5, 8%



## Sex Distribution (n=169)

### Sex distribution - HCP group (n=60)

### Male, 21, 35% Female, 39, 65%

#### Sex distribution - Incident group (n=109)



p=0.037

# Health authority distribution at time of diagnosis (n=169)



# Tumor site distribution (n=169)



# Tumor surgical grade (n=169)



# Tumor surgical stage (n=169)



# Patient distribution by Clinical criteria

| Clinical criteria met                  | Number of patients (n=176) |  |  |
|----------------------------------------|----------------------------|--|--|
| Revised Bethesda                       | 169                        |  |  |
| Amsterdam I                            | 2                          |  |  |
| Amsterdam II                           | 4                          |  |  |
| HCP                                    | 72                         |  |  |
| Family history not taken or incomplete | 24                         |  |  |
| Adopted                                | 6                          |  |  |

Each patient may qualify for one or more criteria Patients diagnosed at 50 were considered to fulfill Revised Bethesda criteria

# Patient distribution by clinical criteria (n=169)

HCP group (n=60)

### 1,2; 1,3; 1,4; 1,5 35% 1 alone 65%

Incident group (n=109)



p=0.003

### MSI analysis in patient population (n=146)



p=0.001

# 23 patients did not have genetic counselling

| Patient deceased                                                                                   | 2 |
|----------------------------------------------------------------------------------------------------|---|
| Patient did not wish to attend appointment                                                         | 1 |
| No appointment offered - personal or family history not suggestive of Lynch syndrome               | 7 |
| No appointment offered - Patient referred to<br>Oncologist for MSI analysis                        | 1 |
| Personal or family history or genetic testing suggestive of other cancer syndrome (FAP, HBOC, NHL) | 3 |
| Patient awaiting appointment                                                                       | 4 |
| Unknown                                                                                            | 5 |

### MSI utilization rate and results

|                      | HCP group (n=37) | Incident group (n=109) |  |  |
|----------------------|------------------|------------------------|--|--|
| MSI utilization rate | 25/37 = 67%      | 28/109 = 26%           |  |  |
| MSI-H rate           | 48%              | 18%                    |  |  |

- 37 of the 60 patients in the HCP group received genetic counselling
- MSI analysis was offered to 25 of 37 patients in the HCP group
- Overall 53 patients underwent MSI analysis
- 32% of patients receiving MSI analysis showed microsatellite instability

## MSI analysis in HCP group (n=37)



## MSI analysis results in HCP and Incident groups



# IHC analysis based on MSI results (n=17)



# Germline mutation analysis results (n=6)

### HCP group (n=5)



|       | HCP group (n=5) |
|-------|-----------------|
| MLH-1 | 1               |
| MSH-2 | 3               |
| MSH-6 | 0               |
| PMS-2 | 1               |

# Demographic & clinicopathologic features of CRC in individuals whose tumors showed microsatellite instability (n=17)

| Age at diagnosis | Geographic<br>location at<br>diagnosis | Tumor location              | Tumor<br>surgical<br>stage | Tumor<br>surgical<br>grade | C linical<br>criteria met | MSI<br>results | Genetic<br>testing<br>results |
|------------------|----------------------------------------|-----------------------------|----------------------------|----------------------------|---------------------------|----------------|-------------------------------|
| 49               | Fraser                                 | RECTUM, NOS                 | 3A                         | 3                          | RB-1                      | MSI-L<br>1/8   |                               |
| 40               | Fraser                                 | SPLENIC FLEXURE<br>OF COLON | 2A                         | 2                          | RB-1,4;<br>AMS-I          | MSI-H<br>7/7   | MLH1                          |
| 47               | Vancouver Island                       | ASCENDING COLON             | 4                          | 9                          | RB-1                      | MSI-L -<br>3/7 |                               |
| 43               | Fraser                                 | CECUM                       | 2A                         | 2                          | RB-1                      | MSI-H<br>7/7   | PMS2-<br>biallelic            |
| 43               | Fraser                                 | CECUM                       | 2A                         | 2                          | RB-1                      | MSI-H<br>7/7   |                               |
| 49               | Fraser                                 | APPENDIX                    | 4                          | 1                          | RB-1                      | MSI-L<br>1/6   |                               |
| 43               | Fraser                                 | CECUM                       | 2A                         | 2                          | RB-1                      | MSI-H<br>7/7   |                               |
| 49               | Fraser                                 | APPENDIX                    | 4                          | 1                          | RB-1                      | MSI-L<br>1/8   |                               |
| 37               | Fraser                                 | SIGMOID COLON               | 4                          | 1                          | RB-1                      | MSI-H<br>7/7   |                               |
| 44               | Vancouver Island                       | RECTUM, NOS                 | 38                         | 2                          | RB-1                      | MSI-L<br>3/7   |                               |
| 43               | Northern                               | RECTUM, NOS                 | 1                          | 2                          | RB-1                      | MSI-H<br>7/7   |                               |
| 37               | Fraser                                 | CECUM                       | 2A                         | 2                          | RB-1,4;<br>AMS-II         | MSI-H<br>7/7   |                               |
| 43               | Fraser                                 | COLON, NOS                  | 38                         | 2                          | RB-1,4                    | MSI-H<br>4/7   | MSH2                          |
| 49               | Fraser                                 | TRANSVERSE<br>COLON         | 3C                         | 2                          | RB-1                      | MSI-L<br>1/8   | MSH2                          |
| 38               | Vancouver<br>Coastal                   | TRANSVERSE<br>COLON         | 3A                         |                            | RB-1, 5                   | MSI-H<br>5/5   | MSH2                          |
| 41               | Southern Interior                      | HEPATIC FLEXURE             | 3A                         |                            | RB1                       | MSI-H<br>7/7   |                               |
| 38               | Vancouver<br>Coastal                   | RECTUM, NOS                 | 3A                         |                            | RB 1                      | MSI-L<br>1/6   |                               |

### **Conclusions**

- Low overall MSI utilization rate especially in the incident group
  - High uptake of MSI testing among those to whom it was offered in the HCP group
- Difficult to make conclusions about effectiveness of MSI testing given low utilization rate
  - 18% microsatellite instability in those having MSI analysis
- Germline mutations identified in HCP group only

### **Conclusions**

- Both approaches have advantages and disadvantages
- Possible reasons for low MSI utilization rate
  - Lack of knowledge about availability and criteria for MSI analysis
  - Perhaps pathologists are better able to utilize MSI
- Further education regarding MSI analysis availability and criteria
- Analysis of data from patients with CRC ≤50 from September 2009-May 2010



# Thank You!