DRUG NAME: Fluorouracil

SYNONYM(S): 5-FU, 5-Fluorouracil, NSC-19893

COMMON TRADE NAME: ADRUCIL®, EFUDEX® CREAM

CLASSIFICATION: antimetabolite

Special pediatric considerations are noted when applicable, otherwise adult provisions apply.

MECHANISM OF ACTION:

Fluorouracil is an analog of the pyrimidine uracil and thus acts as a pyrimidine antagonist. There are three possible mechanisms of action. First, the fluorouracil metabolite fluorodeoxyuridine monophosphate (FdUMP) competes with uracil to bind with thymidylate synthetase (TS) and the folate cofactor. This results in decreased thymidine production and therefore decreased DNA synthesis and repair, and ultimately decreased cell proliferation. Leucovorin (formyltetrahydrofolate, formyl-FH₄) enhances fluorouracil by stabilizing the binding of FdUMP to TS. Second, the fluorouracil metabolite fluorodeoxyuridine triphosphate (FdUTP) is incorporated into DNA thus interfering with DNA replication. Finally, the fluorouracil metabolite fluorouridine-5-triphosphate (FUTP) is incorporated into RNA in place of uridine triphosphate (UTP), producing a fraudulent RNA and interfering with RNA processing and protein synthesis. Fluorouracil is cell-cycle specific (S-phase).

PHARMACOKINETICS:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpatient variability</td>
<td>variations in dihydropyrimidine dehydrogenase (DPD) activity result in differences in toxicity; see Dihydropyrimidine dehydrogenase deficiency paragraph following Side Effects table</td>
</tr>
<tr>
<td>Oral Absorption</td>
<td>erratic: 28-100%</td>
</tr>
<tr>
<td>Distribution</td>
<td>approximately 22% of total body water; penetrates extracellular fluid and third space fluids (e.g., malignant effusions and ascitic fluid)</td>
</tr>
<tr>
<td>cross blood brain barrier?</td>
<td>yes</td>
</tr>
<tr>
<td>volume of distribution</td>
<td>8-11 L/m²</td>
</tr>
<tr>
<td>plasma protein binding</td>
<td>10%</td>
</tr>
<tr>
<td>Metabolism</td>
<td>activated in target cells; 80% degraded in liver by DPD</td>
</tr>
<tr>
<td>active metabolite(s)</td>
<td>FdUMP, FUTP, and FdUTP</td>
</tr>
<tr>
<td>inactive metabolite(s)</td>
<td>dihydrofluorouracil</td>
</tr>
<tr>
<td>Excretion</td>
<td>60-80% excreted as respiratory CO₂; 2-3% by biliary system</td>
</tr>
<tr>
<td>urine</td>
<td><10% as intact drug</td>
</tr>
<tr>
<td>terminal half life</td>
<td>IV bolus: 8-14 min</td>
</tr>
<tr>
<td>clearance</td>
<td>IV bolus: 350-850 mL/min/m²; dependent on dose, schedule, and route of administration; nonlinear pharmacokinetics due to saturable degradation; interference with fluorouracil degradation markedly prolongs its half-life; continuous infusion: clearance increases</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>DPD deficiency: Caucasian (3-5%); African-American 0.1%</td>
</tr>
</tbody>
</table>

Adapted from standard references unless specified otherwise.
USES:

Primary uses:
* Actinic keratoses (topical)
* Bladder cancer
* Breast cancer
* Colorectal cancer
* Gastric cancer
* Head and neck cancer
* Ovarian cancer
* Pancreatic cancer
* Prostate cancer
* Skin cancer, basal cell (topical)

Other uses:
* Cervical cancer
* Esophageal cancer
* Ocular cancer (topical)
* Renal cell cancer
* Skin cancer, Bowen's disease (topical)
* Skin cancer, squamous cell (topical)

SPECIAL PRECAUTIONS:

Contraindications:
- history of hypersensitivity reaction to fluorouracil
- relatively contraindicated in patients who have a known hypersensitivity to capecitabine
- complete or near complete absence of dihydropyrimidine dehydrogenase (DPD) activity

Caution:
- dihydropyrimidine dehydrogenase (DPD) deficiency may result in life-threatening or fatal toxicity in patients receiving fluorouracil via parenteral or topical administration
- nonlinear pharmacokinetics result in unpredictable plasma concentrations and toxicity at high doses
- patients who are receiving radiation or who have received high-dose pelvic radiation and patients previously treated with alkylating agents may experience more bone marrow suppression

Special populations:
- elderly patients are at increased risk for developing toxicities, likely due to decreased bone marrow reserve
- female patients are at increased risk for developing toxicities

Carcinogenicity: Not yet studied.

Mutagenicity: Fluourouracil has been shown to be mutagenic in some bacterial strains. It is clastogenic in mammalian in vitro and in vivo chromosome tests.

Fertility: The effects of fluorouracil on fertility have not been established.

Pregnancy: FDA Pregnancy Category D. There is positive evidence of human fetal risk, but the benefits from use in pregnant women may be acceptable despite the risk (e.g., if the drug is needed in a life-threatening situation or for a serious disease for which safer drugs cannot be used or are ineffective).

Breastfeeding is not recommended due to the potential secretion into breast milk.

SIDE EFFECTS:

The table includes adverse events that presented during drug treatment but may not necessarily have a causal relationship with the drug. Because clinical trials are conducted under very specific conditions, the adverse event rates observed may not reflect the rates observed in clinical practice. Adverse events are generally included if they were reported in more than 1% of patients in the product monograph or pivotal trials, and/or determined to be
clinically important. When placebo-controlled trials are available, adverse events are included if the incidence is > 5% higher in the treatment group.

<table>
<thead>
<tr>
<th>ORGAN SITE</th>
<th>SIDE EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>allergy/immunology</td>
<td>anaphylaxis (rare)</td>
</tr>
<tr>
<td></td>
<td>generalized allergic reactions (rare)</td>
</tr>
<tr>
<td>blood/bone marrow/febrile neutropenia</td>
<td>myelosuppression*: onset: 7-10 days; nadir: 14 days; recovery: 30 days</td>
</tr>
<tr>
<td>cardiovascular (arrhythmia)</td>
<td>arrhythmias</td>
</tr>
<tr>
<td></td>
<td>cardiotoxicity* (< 8%); see paragraph following Side Effects table</td>
</tr>
<tr>
<td></td>
<td>chest pain (< 1%); ranging from mild angina to crushing pain</td>
</tr>
<tr>
<td></td>
<td>CHF (rare)</td>
</tr>
<tr>
<td></td>
<td>hypotension (< 1%)</td>
</tr>
<tr>
<td>constitutional symptoms</td>
<td>somnolence (< 1%)</td>
</tr>
<tr>
<td>dermatology/skin</td>
<td>extravasation hazard: irritant</td>
</tr>
<tr>
<td></td>
<td>For side effects following topical application to the skin, see paragraph following Side Effects table</td>
</tr>
<tr>
<td></td>
<td>alopecia (> 10%)</td>
</tr>
<tr>
<td></td>
<td>dermatitis* (>10%)</td>
</tr>
<tr>
<td></td>
<td>dry skin and fissuring (1-10%)</td>
</tr>
<tr>
<td></td>
<td>nail changes (< 1%); banding or loss of nails</td>
</tr>
<tr>
<td></td>
<td>palmar-plantar erythrodysesthesia (PPE)* (<1%); see paragraph following Side Effects table</td>
</tr>
<tr>
<td></td>
<td>photosensitivity (< 1%)</td>
</tr>
<tr>
<td></td>
<td>vein hyperpigmentation (< 1%); proximal to injection sites</td>
</tr>
<tr>
<td>gastrointestinal</td>
<td>emetogenic potential*: rare (< 10%)</td>
</tr>
<tr>
<td></td>
<td>anorexia (> 10%)</td>
</tr>
<tr>
<td></td>
<td>diarrhea* (> 10%)</td>
</tr>
<tr>
<td></td>
<td>esophagitis (>10%)</td>
</tr>
<tr>
<td></td>
<td>heart burn (>10%)</td>
</tr>
<tr>
<td></td>
<td>nausea (< 10%)</td>
</tr>
<tr>
<td></td>
<td>stomatitis* (> 10%)</td>
</tr>
<tr>
<td></td>
<td>epithelial ulceration (1-10%)</td>
</tr>
<tr>
<td></td>
<td>vomiting (< 10%)</td>
</tr>
<tr>
<td>hemorrhage</td>
<td>GI bleeding</td>
</tr>
<tr>
<td>hepatic</td>
<td>biliary sclerosis</td>
</tr>
<tr>
<td></td>
<td>hepatic toxicity (< 1%)</td>
</tr>
<tr>
<td>neurology</td>
<td>acute cerebellar ataxia (< 1%); increased with high doses or intensive regimens; see paragraph following Side Effects table</td>
</tr>
</tbody>
</table>
Clinically important side effects are in bold, italics

<table>
<thead>
<tr>
<th>ORGAN SITE</th>
<th>SIDE EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>neurotoxicities* (< 1%)</td>
<td></td>
</tr>
<tr>
<td>ocular/visual</td>
<td>excessive lacrimation</td>
</tr>
<tr>
<td>ocular toxicities*; see paragraphs following Side Effects table for ocular toxicity related to systemic and ocular (topical) administration</td>
<td></td>
</tr>
<tr>
<td>pain</td>
<td>headache (< 1%)</td>
</tr>
<tr>
<td>pulmonary</td>
<td>dyspnea (< 1%)</td>
</tr>
</tbody>
</table>

Adapted from standard references9,10 unless specified otherwise.

Severity varies with route of administration, refer to the paragraph “Dosing schedule and toxicity”.

Dosing schedule and toxicity: The spectrum of toxicity associated with fluorouracil treatment varies with dose, schedule, route of administration, and whether the fluorouracil is being used with a biochemical modulator.6 The most commonly seen toxicities when standard doses are administered in the following schedules and routes are:

- monthly bolus administration22: myelosuppression can be dose-limiting
- daily bolus administration for 5 days22: diarrhea can be dose-limiting; myelosuppression, stomatitis, ocular, and dermatitis
- continuous infusion given over 24 hours to several weeks22: diarrhea, and stomatitis can be dose-limiting; myelosuppression, dermatitis, PPE, neurologic, ocular, and cardiotoxicity10
- weekly bolus administration22: diarrhea can be dose-limiting; myelosuppression, stomatitis,6 and ocular23
- topical daily6: local inflammation

In the event of a 5FU overdose, appropriate and timely measures to anticipate and implement supportive management of patients at risk for severe 5FU toxicity should be implemented. For further information on management of 5FU overdose, see BC Cancer Management Guideline: Management of 5-fluorouracil (5FU) infusion overdose.

Oral cryotherapy with bolus doses of fluorouracil: It is recommended that patients receiving bolus fluorouracil undergo 30 minutes of oral cryotherapy to decrease the incidence and severity of fluorouracil-induced stomatitis.24 The incidence can be reduced by 50%.26 Starting 5 minutes before the injection, the patient is asked to place ice chips into their mouth and swish for 30 minutes, replenishing the ice as it melts. This may cause numbness or headaches which subside quickly. This cooling of the oral cavity leads to vasoconstriction resulting in a lower concentration of fluorouracil reaching the oral mucosa.24 Oral cryotherapy is not used for infusional fluorouracil as this would be very inconvenient. It is also not used for bolus fluorouracil administered in combination with oxaliplatin. This is due to the concern with oxaliplatin and cold related laryngo-dysesthesias.18

Acute cerebellar syndrome can rarely occur and is characterized by an acute onset of ataxia, dysmetria, dysartria, and nystagmus that develops weeks to months after beginning treatment.26 These symptoms usually resolve after discontinuation of fluorouracil.26 Cerebellar syndrome may be partly explained because fluorouracil crosses the blood-brain barrier, and the highest concentrations are found in the cerebellum.26 Other rarer neurologic side effects include encephalopathy, optic neuropathy, eye movement abnormalities, focal dystonia, cerebrovascular disorders, parkinsonian syndrome, peripheral neuropathy, and seizures.26

Cardiotoxicity19: Fluorouracil has the second highest incidence of chemotherapy induced cardiotoxicity, after the anthracyclines.10 The incidence of fluorouracil induced cardiotoxicity can be as high as 8%.19 Within this group types of cardiotoxicity include27:

- electrocardiographic changes, 69%
- angina, 48%
- myocardial infarction, 23%
- acute pulmonary edema, 17%
- arrhythmias, 16%
Fluorouracil

- elevated cardiac enzymes, 14%
- cardiac arrest and pericarditis, 2%

Coronary vasospasm is thought to be the underlying mechanism of this toxicity. Although most patients who experience fluorouracil-induced cardiotoxicity have no previous cardiac problems, history of preexisting coronary artery disease is a risk factor. Other risk factors include route of administration (refer to the Dosing schedule and toxicity paragraph following the Side Effect table) and the use of concurrent radiation or anthracyclines. Most cases of fluorouracil-induced cardiotoxicities resolve after termination of fluorouracil infusion and/or administration of nitrates or calcium channel blockers. Rechallenging these patients remains controversial. If rechallenged, these patients need careful observation during drug infusion and may benefit from treatment with calcium channel blockers or nitrates.

Palmar-plantar erythrodysesthesia (PPE), also called hand-foot skin reaction, may occur in association with the continuous infusion of fluorouracil. PPE may gradually disappear over 5-7 days after discontinuance of fluorouracil therapy. Although vitamin B₆ (pyridoxine) 50-150 mg orally daily was previously proposed for the prevention of paresthesias, current evidence suggests that pyridoxine is not effective.

Dihydropyrimidine dehydrogenase (DPD) deficiency is a rare, inherited disorder of pyrimidine degradation. The frequency of low or deficient DPD activity in predominantly Caucasian and African-American populations is 3-5% and 0.1%, respectively. For patients with even a partial DPD deficiency, treatment with fluorouracil can lead to life-threatening complications. Fluorouracil clearance is dependent on DPD as fluorouracil is enzymatically inactivated to dihydrofluorouracil by DPD. There is no evidence of fluorouracil degradation in DPD-deficient patients. Toxicities can include severe diarrhea, stomatitis, and myelosuppression. Nausea, vomiting, rectal bleeding, volume depletion, skin changes, and neurologic abnormalities (cerebellar ataxia, changes in cognitive function, changes in the level of consciousness) may also occur. Management should include aggressive supportive care with hemodynamic support, parenteral nutrition, antibiotics, and hematopoietic colony stimulating factors. Tests for the diagnosis of DPD deficiency are not readily available and as a result most cases are diagnosed long after the administration of fluorouracil.

Following systemic administration, fluorouracil-induced **ocular toxicities** result primarily from ocular surface problems, such as excessive lacrimation, blurred vision, photophobia, and eye irritation. Excessive lacrimation is the most frequent ocular symptom and can be quite dramatic; it may occur any time during treatment and possibly accompanied with pruritus and burning. Fluorouracil has been found in tear fluid and can cause acute and chronic conjunctivitis leading to tear duct fibrosis. Ocular toxicities can also include epiphora, blepharitis, conjunctivitis, tear duct stenosis, and sclerosing canaliculitis. Applying ice packs to the eyes before, during, and for 30 minutes after fluorouracil injection may decrease ocular toxicity.

Following **ocular (topical) administration** of fluorouracil eye drops, commonly reported local side effects may include: pain, tearing, photophobia, and redness. Eyelid edema, conjunctival congestion, and keratopathy have also been reported. Local ocular side effects tend to be mild, reversible, and transient. To minimize contact with healthy skin, an inert topical ointment (such as petrolatum) may be applied to the eyelid and skin around the eye to act as a physical barrier against the active drug. Ocular toxicities are reported to resolve within 4 weeks of treatment end with local application of lubricant eye drops (e.g., artificial tears). Topical corticosteroids may be used with lubricant drops to reduce symptoms.

Topical application to the skin leads to the following sequence of effects: erythema, usually followed by vesiculation, erosion, ulceration, necrosis, and epithelization. The lower frequency and intensity of activity in adjacent normal skin indicates a selective cytotoxic property. The most frequent local reactions are pain, pruritus, hyperpigmentation, and burning at the application site. Other local reactions include dermatitis, scarring, soreness, and tenderness. Insomnia, stomatitis, suppuration, scaling, swelling, irritability, medicinal taste, photosensitivity, and lacrimation have also been reported.
INTERACTIONS:

<table>
<thead>
<tr>
<th>AGENT</th>
<th>EFFECT</th>
<th>MECHANISM</th>
<th>MANAGEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>allopurinol</td>
<td>may reduce conversion of fluorouracil to metabolites (possible loss of fluorouracil efficacy); however, allopurinol has been used clinically to modulate toxicity of fluorouracil without loss of activity</td>
<td>allopurinol may competitively inhibit orotate phosphoribosyltransferase, the enzyme responsible for formation of FdUMP and FUTP following activation of fluorouracil</td>
<td>clinical significance is unclear</td>
</tr>
<tr>
<td>cimetidine</td>
<td>delayed, moderate, possible; fluorouracil efficacy and toxicity may be increased</td>
<td>unknown</td>
<td>monitor for fluorouracil toxicity; discontinue cimetidine if necessary</td>
</tr>
<tr>
<td>fosphenytoin</td>
<td>delayed, moderate, possible; fosphenytoin efficacy and toxicity may be increased</td>
<td>inhibition of hydantoin metabolism (CYP2C9) by fluorouracil suspected</td>
<td>monitor fosphenytoin plasma levels; observe clinical response when starting or stopping fluorouracil</td>
</tr>
<tr>
<td>gemcitabine</td>
<td>increased cytotoxic and toxic effects of fluorouracil</td>
<td>leucovorin stabilizes the bond to thymidylate synthetase</td>
<td>some protocols are designed to take advantage of this effect; monitor toxicity closely</td>
</tr>
<tr>
<td>leucovorin</td>
<td>increased cytotoxic and toxic effects of fluorouracil</td>
<td>leucovorin stabilizes the bond to thymidylate synthetase</td>
<td>some protocols are designed to take advantage of this effect; monitor toxicity closely</td>
</tr>
<tr>
<td>metronidazole</td>
<td>fluorouracil efficacy and toxicity may be increased</td>
<td>metronidazole may decrease the metabolism of fluorouracil</td>
<td>monitor for fluorouracil toxicity</td>
</tr>
<tr>
<td>oxaliplatin</td>
<td>no influence on fluorouracil pharmacokinetics</td>
<td>inhibition of hydantoin metabolism (CYP2C9) by fluorouracil suspected</td>
<td>monitor phenytoin plasma levels; observe clinical response when starting or stopping fluorouracil</td>
</tr>
<tr>
<td>phenytoin</td>
<td>delayed, moderate, possible; phenytoin efficacy and toxicity may be increased</td>
<td>inhibition of hydantoin metabolism (CYP2C9) by fluorouracil suspected</td>
<td>monitor phenytoin plasma levels; observe clinical response when starting or stopping fluorouracil</td>
</tr>
<tr>
<td>thiazides</td>
<td>delayed, moderate, possible; thiazides may prolong fluorouracil-induced leukopenia</td>
<td>unknown</td>
<td>consider alternative antihypertensive therapy</td>
</tr>
<tr>
<td>warfarin</td>
<td>elevation of anticoagulation parameters (e.g., PTT, INR) and reports of increased bleeding; effect may be delayed</td>
<td>probable inhibition of CYP 2C9 by fluorouracil</td>
<td>monitor INR regularly during therapy (e.g., weekly); adjust warfarin dose as needed and increase monitoring if indicated</td>
</tr>
</tbody>
</table>
SUPPLY AND STORAGE:

Topical:
Valeant Canada Limited supplies fluorouracil in a 5% cream. Other ingredients include: white petrolatum, stearyl alcohol, propylene glycol, polysorbate 60, and parabens. Store at room temperature. Protect from light.15

Hill Dermaceuticals supplies fluorouracil in a 4% (w/w) cream. Other ingredients include: cetyl and stearyl alcohol, butylated hydroxytoluene, parabens, and peanut oil. Store at room temperature.56

Injection:
Sandoz Canada Inc. supplies fluorouracil as a preservative free solution in 500 mg single-use and 5000 mg pharmacy bulk vials in a concentration of 50 mg/mL. Store at room temperature. Protect from light.57

Accord Healthcare Inc. supplies fluorouracil as a preservative free solution in 5000 mg pharmacy bulk vials in a concentration of 50 mg/mL. Store at room temperature. Protect from light.14

Biolyse Pharma Corp supplies fluorouracil as a preservative free solution in 500 mg single-use and 5000 mg pharmacy bulk vials in a concentration of 50 mg/mL. Store at room temperature. Protect from light.58

For basic information on the current brand used at BC Cancer, see [Chemotherapy Preparation and Stability Chart](#) in Appendix.

SOLUTION PREPARATION AND COMPATIBILITY:

For basic information on the current brand used at BC Cancer, see [Chemotherapy Preparation and Stability Chart](#) in Appendix.

Additional information:
- slight discolouration does not affect potency or safety59
- darker yellow discolouration indicates greater decomposition so dark yellow solutions may need to be discarded59
- crystals that have formed in the solution can be redissolved by warming and shaking59

Fluorouracil Eye Drops60,61:
- fluorouracil eye drops 10 mg/mL (1%) can be prepared with normal saline (NS)
- final product is stable for 7 days if stored at room temperature or refrigerated

To achieve a 10 mg/mL (1%) eye drop solution:
- withdraw 2 mL (100 mg) from 50 mg/mL vial of fluorouracil
- transfer the 2 mL (100 mg) to a sterile 15 mL eye dropper bottle
- add 8 mL NS to the eye dropper bottle to give a concentration of 10 mg/mL (1%)

PARENTERAL ADMINISTRATION:

<table>
<thead>
<tr>
<th>Method</th>
<th>BC Cancer administration guideline noted in bold, italics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcutaneous</td>
<td>not used due to corrosive nature</td>
</tr>
<tr>
<td>Intramuscular</td>
<td>not used due to corrosive nature</td>
</tr>
<tr>
<td>*Direct intravenous</td>
<td>over 2-4 minutes62,63</td>
</tr>
<tr>
<td>*Intermittent infusion</td>
<td>can be used (e.g., dilute in 50 mL and infuse for up to 15 minutes)10</td>
</tr>
<tr>
<td>*Continuous infusion</td>
<td>over 24 hours or greater; may be given via an ambulatory infusion device</td>
</tr>
</tbody>
</table>

[BC Cancer Drug Manual® All rights reserved. Page 7 of 14]
Intraperitoneal

15 mg/kg and 50 mEq sodium bicarbonate to 1000 mL 1.5% dextrose dialysis solution; dwell for 23 hours then drain for one hour

<table>
<thead>
<tr>
<th>Dosage Route</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraperitoneal</td>
<td>15 mg/kg and 50 mEq sodium bicarbonate to 1000 mL 1.5% dextrose dialysis solution; dwell for 23 hours then drain for one hour</td>
</tr>
<tr>
<td>Intrapleural</td>
<td>no information found</td>
</tr>
<tr>
<td>Intrathecal</td>
<td>contraindicated due to neurotoxicity</td>
</tr>
<tr>
<td>Intra-arterial</td>
<td>hepatic artery</td>
</tr>
<tr>
<td>Intravesical</td>
<td>portal vein infusion</td>
</tr>
</tbody>
</table>

Ocular (topical)

Instill eye drops in the affected eye as per protocol

Doses prescribed for continuous infusion can be FATAL when given as direct intravenous or intermittent infusion.

TOPICAL ADMINISTRATION:

The cream is applied twice daily, preferably with a nonmetal applicator or glove. If the cream is applied with fingertips, the hands should be washed immediately afterwards. Apply with care near the eyes, mouth and nose. An occlusive dressing is not essential, and may increase the incidence of inflammatory reactions in adjacent normal skin. Therapy is usually continued until the inflammatory reaction reaches the erosion, necrosis, and ulceration stage (2-4 weeks), after which healing occurs over 4-8 weeks. While the patient is undergoing topical 5-FU therapy, consideration can be given to curettage, wound excision and removal of pathological tissue. Patients should avoid prolonged exposure to ultraviolet light while under treatment as the intensity of the reaction may be increased.

DOSAGE GUIDELINES:

Refer to protocol by which patient is being treated. Numerous dosing schedules exist and depend on disease, response and concomitant therapy. Guidelines for dosing also include consideration of absolute neutrophil count (ANC). Dosage may be reduced, delayed or discontinued in patients with bone marrow depression due to cytotoxic/radiation therapy or with other toxicities.

Adults:

<table>
<thead>
<tr>
<th>Cycle Length</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 week</td>
<td>1000 mg/m² IV over 24 hours for 2 consecutive days starting on day 1 (total dose per cycle 2000 mg/m²) (maximum dose is 5000 mg/48 h)</td>
</tr>
<tr>
<td>2 weeks</td>
<td>400 mg/m² IV for one dose on day 1 immediately followed by 2400-3000 mg/m² IV over 46 hours (total dose per cycle 2800-3400 mg/m²)</td>
</tr>
<tr>
<td>3 weeks</td>
<td>500-600 mg/m² IV for one dose on day 1 (total dose per cycle 500-600 mg/m²)</td>
</tr>
<tr>
<td>3 weeks</td>
<td>1000 mg/m² IV over 24 hours for 3 consecutive days starting on day 1 (total dose per cycle 3000 mg/m²)</td>
</tr>
<tr>
<td>4 weeks</td>
<td>425 mg/m² IV once daily for 5 consecutive days starting on day 1 (total dose per cycle 2125 mg/m²)</td>
</tr>
</tbody>
</table>
Fluorouracil

4 weeks\(^{83,84}\): when given as a dose-dense regimen with filgrastim (G-CSF) support:
500 mg/m\(^2\) IV for one dose on days 1 and 8
(total dose per cycle 1000 mg/m\(^2\))

4 weeks\(^{85-87}\): 500-600 mg/m\(^2\) IV for one dose on days 1 and 8
(total dose per cycle 1000-1200 mg/m\(^2\))

4 weeks\(^{88-91}\): when given as a dose-dense regimen with filgrastim (G-CSF) support:
500 mg/m\(^2\) IV for one dose on days 1 and 15
(total dose per cycle 1000 mg/m\(^2\))

4 weeks\(^{92,93}\): 1000 mg/m\(^2\) IV over 24 hours for 4 consecutive days
starting on day 1
(total dose per cycle 4000 mg/m\(^2\))

6 weeks\(^{94,95}\): 400-500 mg/m\(^2\) IV on day 1, 8, 15 and 22
(total dose per cycle 1600-2000 mg/m\(^2\))

6 weeks\(^{95}\): 1000 mg/m\(^2\) IV over 24 hours for 4 consecutive days
starting on day 1
(total dose per cycle 4000 mg/m\(^2\))

Ocular (topical):

4-6 weeks\(^{61}\): 1% eye drops (one drop) instilled in the affected eye 3 to 4 times daily for 4 to 5 consecutive days each week

4 weeks\(^{11,36,61}\): 1% eye drops (one drop) instilled in the affected eye 4 times daily for 7 consecutive days starting on day 1, followed by 21 days of no treatment

28-30 days\(^{36,37}\): 1% eye drops (one drop) instilled in the affected eye 3 to 4 times daily for 28-30 consecutive days starting on day 1, followed by 28-30 days of no treatment

2-3 weeks\(^{96}\): 1% eye drops (one drop) instilled in the affected eye 3 to 4 times daily for 14-21 consecutive days starting on day 1, followed by 3-10 weeks of no treatment

30-49 days\(^{36,37,97}\): 1% eye drops (one drop) instilled in the affected eye 4 times daily for 2-4 days starting on day 1, followed by 30-45 days of no treatment (pulse therapy)

Concurrent radiation\(^{98-105}\): can be used with variable schedules and dosing; specific treatment protocols must be consulted; see Special Precautions regarding patients who have received high-dose pelvic radiation

Dosage in myelosuppression: modify according to protocol by which patient is being treated; if no guidelines available, refer to Appendix "Dosage Modification for Myelosuppression"
Dosage in obesity: if patient is obese or there has been a spurious weight gain because of edema, ascites or other form of abnormal fluid retention, the ideal weight or estimated lean body mass should be used.

Dosage in renal failure: no adjustment required.

Dosage in hepatic failure: standard doses have been used in some patients with elevated bilirubin; may consider 50% dose reduction for starting doses or omit dose for bilirubin >85 micromol/L or AST >180 units/L.

Dosage in dialysis: hemodialysis: give ½ dose; administer dose following hemodialysis; chronic ambulatory peritoneal dialysis (CAPD): no data; continuous renal replacement therapy (CRRT): give full dose.

Topical: apply twice daily x 2-4 weeks.

Children:

Intravenous: 500 mg/m² IV once or daily x 5
800-1200 mg/m² IV over 24-120 h

Topical: use and dose as determined by physician.

REFERENCES:

Fluorouracil