Ovarian Cancer: The New Paradigm
(and what you need to know clinically)

Dianne Miller, M.D., FRCSC
University of British Columbia
and the British Columbia Cancer Agency
Ovarian Cancer

- Germ Cell:
 - Dysgerminoma
 - Endodermal sinus
 - Teratoma etc.

- Sex cord stromal
 - Granulosa cell
 - FOX L2
 - Sertoli leydig etc

- Stromal tumors
 - Lymphoma
 - Sarcoma etc.

- Epithelial Tumors
 - Serous
 - Mucinous
 - Endometrioid
 - Clear cell etc.
Objectives

- To discuss why epithelial ovarian cancer is becoming vanishingly rare!
- To discuss our new insights into ovarian cancer
 - Epithelial Ovarian Cancer is at least five distinct diseases
 - High Grade Serous*
 - Endometriod*
 - Clear cell*
 - Mucinous
 - Low Grade Serous
 - (and possibly transitional cell)
- To discuss the clinical implications of the changes in our understanding of the origin of “Ovarian Cancers”
"Ovarian" Cancer in Canada

- modest lifetime risk of $1/70$, **but:**
 - major public health issue:
 - 2500 new cases/annum: 1750 deaths

- potential years of life lost from cancer:
 - breast $94,400 = 1.0$
 - ovary $28,600 = 0.3$
 - uterus $11,400$
 - cervix $10,100$
International Benchmarking

- Published Online: 22 December 2010

- **Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995—2007** (the International Cancer Benchmarking Partnership): an analysis of population-based cancer registry data
“Ovarian Cancer”

- Screening ineffective
- Survival rates low & stable
“Ovarian Cancer” Presentation

- **1/3 gradual intrapelvic growth →**
 - lower GI & bladder Sx
 - self-identified mass
 - often low stage:
 - Clear cell
 - Endometrioid
 - Mucinous histology

- **2/3 early transperitoneal spread →**
 - GI dysfunction, early satiety, ascites
 - often high stage,
 - high grade serous histology
Ovarian Cancer

- Until recently: all were thought to have the same cell of origin: the OSE or (ovarian surface epithelium)
- Now at least 5 distinct diseases
Endometroid and Clear Cell: Ovarian Cancer?

- 25% of epithelial cancers
- Universally associated with endometriosis
- Cancers of endometriosis
- Dependant on unique mutations
 - ARID 1A*
- Tend to be younger
- More likely to be localized to the pelvis
- Less likely to respond to chemotherapy (clear cell)
- More radiotherapy sensitive
- Endometroid may be hormone sensitive and behave similar to uterine cancer

Weigand, Huntsman et al NEJM Sept 2010
Endometroid and Clear Cell Cancer

- New Questions:
 - Why do the cancers form much more commonly in ovarian endometriosis (in endometriomas) than in ectopic endometriosis?
 - Hormonal milieu?
 - Other stromal factors?
 - Is there an identifiable pre-cursor lesion?
 - Atypical endometriosis (Arid 1-A mutations, high proliferation index etc.)
 - What is the risk of developing cancer with endometriosis? With endometriomas?
Endometroid and Clear Cell

- Frequency of endometriosis:
 - 12-20% of women
- Frequency of endometriomas:
 - 3-5%
- Endometrioma may represent a significant risk factor

25% of ovarian cancers are endometroid or clear cell: Develop in the 3-5% of women with endometriomas
Which Endometriomas should we worry about?

- Those with complexity
 - Irregular internal surface
 - Septae
 - Internal excresances
- Any that increase in size post menopausally
Low Grade Serous

- Indolent and rare
- Not particularly chemo sensitive
- Can develop from LMP tumors
- Psammoma bodies abundant, may be intensely calcified
- May be hormone responsive
- **NOT** related to the high grade serous cancers
 - not associated with p53 mutations
- May be true cancers of the ovary?
Mucinous tumors

- Malignant tumours very rare (approx 2-4%)
- Benign and borderline common
- Poor response to traditional chemotherapy
- Significant proportion (up to 1/3) over express HER 2
 - Potential for targeted treatment*
- Optimal treatment??

McAlpine et.al BMC Cancer 2009
Mucinous tumors: Ovarian Cancer?

HPV Positive Tumors?

- At least some Mucinous tumors are associated with Cervical lesions
 - AIS
 - Early invasive adenocarcinomas of the cervix
- HPV and p16 positive

Elishaev E, Gilks CB et Al Am J Path 29:3 2005
High Grade Serous: Ovarian Cancer?

- Pelvic High grade Serous Tumors
Serous Tumors: objectives

- Discuss the evidence for a tubal origin
- Understand the clinical implications of a proposed tubal origin for most Pelvic serous cancers
- Discuss the potential impact of alterations in surgical practice on the incidence and mortality from ovarian Cancer.
- Discuss the acceptability of change amongst practicing gynecologists
Is there a precursor lesion to “ovarian carcinoma”?

- Cervix (CIN), colon (adenoma) and breast (ductal in situ) all have precursor lesions
- What about ovarian cancer?
- 10 years ago....no precursor or in situ lesion was known
The Lesson from BRCA

- Precursor lesions identified in prophylactic BSO specimens from BRCA mutation carriers
- Early studies had found nothing
- BUT when fallopian tubes scrutinized more carefully – more in situ cancers found
Tubal intraepithelial carcinoma

TP53

Ki67

Implication: There is a precursor!

- Most pelvic serous carcinoma (ovary, tubal, primary peritoneal) ARISE FROM THE FIMBRIATED END OF THE FALLOPIAN TUBE
- Pelvic serous carcinoma accounts for 90% of advanced staged “ovarian cancer”
The Evidence

- In 75% of cases of ‘advanced ovarian cancer’*
 - Data from our center on successive cases**
- **Intraepithelial mucosal involvement, or total destruction of the tube ipsilateral to the largest ovarian mass.**
- **Unilateral fallopian tube mucosal involvement**

*Kindelberger et al. AmJ Surg Path Feb 07
**Salvador: Gyn Onc 2008
The native histology of the fallopian tube epithelium is mullerian serous

- For the ovarian epithelium (OSE) to be the source of these cancers there would have to be:
 - transformation to a mullerian type epithelium
 - malignant transformation or invagination of tubal epithelium on the surface of the ovary
- The surface area of the fimbriated end of the tube is huge compared with the surface area of the ovary
Possible Inflammatory Etiology

- Inflammation/infection is the trigger for many cancers

- Ascending infection
- Pelvic inflammatory disease (PID) is linked to ovarian cancer *
- Tubal factor infertility (OR 3.24)** and infertility related to endometriosis (OR 2.48) is associated with a higher risk of ovarian cancer
- Oral Contraceptive Pill use, Pregnancy and tubal ligation all decrease the incidence of PID and the risk of Serous Ovarian Cancer

* Risch et al Ca Epi, Biomarkers and Prevention July 1995
** Brinton et al: Fertility and Sterility, Aug 2004
*** Ness et al: JNCI, Sept 1999
There is known retrograde flow of menstrual blood at the time of menses

- Menstrual blood is found in the pelvis at menses laproscopically
- Menstrual blood is rich in inflammatory cytokines
 - IL2, IL 8, IL 12, II 1a, TNFa, GM-CSF, etc. etc*

*Strandall et al: J Assist Repro& Genetics, July 2004
Subtype-specific odds ratios for invasive epithelial ovarian cancer associated with tubal ligation

<table>
<thead>
<tr>
<th>Histological subtype</th>
<th>Cases (n=7451)</th>
<th>Adjusted* OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serous</td>
<td>4772 (64.0)</td>
<td>0.81 (0.74-0.88)</td>
</tr>
<tr>
<td>High Grade</td>
<td>4444</td>
<td>0.81 (0.74-0.89)</td>
</tr>
<tr>
<td>Low Grade</td>
<td>328</td>
<td>0.83 (0.60-1.16)</td>
</tr>
<tr>
<td>Endometrioid</td>
<td>1317 (17.7)</td>
<td>0.62 (0.48-0.80)</td>
</tr>
<tr>
<td>Clear Cell</td>
<td>754 (10.1)</td>
<td>0.48 (0.40-0.58)</td>
</tr>
<tr>
<td>Mucinous</td>
<td>608 (8.2)</td>
<td>0.52 (0.41-0.67)</td>
</tr>
</tbody>
</table>

* Conditional logistic regression stratified by site and age (5-year groups) and adjusted for age (continuous), race/ethnicity, OC use, and parity.
Early Stage High Grade Serous Tumors are Very Rare

PCT * RFS_censore Crosstabulation

<table>
<thead>
<tr>
<th>PCT</th>
<th>RFS_censore</th>
<th>Count</th>
<th>event</th>
<th>censored</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCT EC</td>
<td>Count</td>
<td>1</td>
<td>45</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within PCT</td>
<td>2,2%</td>
<td>97,8%</td>
<td>100,0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>.8%</td>
<td>38,1%</td>
<td>39,0%</td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>Count</td>
<td>1</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within PCT</td>
<td>5,0%</td>
<td>95,0%</td>
<td>100,0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>.8%</td>
<td>16,1%</td>
<td>16,9%</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Count</td>
<td>4</td>
<td>24</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within PCT</td>
<td>14,3%</td>
<td>85,7%</td>
<td>100,0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>3,4%</td>
<td>20,3%</td>
<td>23,7%</td>
<td></td>
</tr>
<tr>
<td>HG-SC</td>
<td>Count</td>
<td>7</td>
<td>12</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within PCT</td>
<td>36,8%</td>
<td>63,2%</td>
<td>100,0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>5,9%</td>
<td>10,2%</td>
<td>16,1%</td>
<td></td>
</tr>
<tr>
<td>LG-SC</td>
<td>Count</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within PCT</td>
<td>.0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>.0%</td>
<td>2,5%</td>
<td>2,5%</td>
<td></td>
</tr>
<tr>
<td>TCC</td>
<td>Count</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within PCT</td>
<td>.0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>.0%</td>
<td>.8%</td>
<td>.8%</td>
<td></td>
</tr>
<tr>
<td>Squamous</td>
<td>Count</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within PCT</td>
<td>.0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>.0%</td>
<td>.8%</td>
<td>.8%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>13</td>
<td>105</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within PCT</td>
<td>11,0%</td>
<td>89,0%</td>
<td>100,0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>11,0%</td>
<td>89,0%</td>
<td>100,0%</td>
<td></td>
</tr>
</tbody>
</table>

Progressionsite

<table>
<thead>
<tr>
<th>Progressionsite</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>0</td>
<td>63,2%</td>
<td>63,2%</td>
<td>63,2%</td>
</tr>
<tr>
<td>pelvis only</td>
<td>2</td>
<td>10,5%</td>
<td>10,5%</td>
<td>73,7%</td>
</tr>
<tr>
<td>pelvis and abd</td>
<td>3</td>
<td>15,8%</td>
<td>15,8%</td>
<td>89,5%</td>
</tr>
<tr>
<td>extra abd/pelvis lymph node</td>
<td>2</td>
<td>10,5%</td>
<td>10,5%</td>
<td>100,0%</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

*Cheryl Brown outcomes Unit: Martin Koebel
Proposed Pathogenesis of Fallopian Tube Cancer

OCP + pregnancy decrease cilia motility

Tubal ligation blocks ascension

Ascending Infection + Endometriosis

OCP + pregnancy increase cervical mucus thickness

IL1, IL8, IL12, TNF-alpha, GM-CSF

Inflammatory agents

Chronic inflammation

Mutagenesis + DNA replication errors
The Lesson from BRCA

- In hereditary “ovarian cancer” the PRECURSOR is in the FALLOPIAN TUBE (tubal intraepithelial carcinoma)
- The same holds true for sporadic serous cancers
Why is this important?

- Prevention:
 - In Canada almost 50 thousand women have hysterectomies per year
 - 2/3 have the ovaries and fimbriated end of the tube left in situ
 - 18% of patients in the Ovarian Cancer outcomes data base had a hysterectomy prior to their diagnosis
 - A further 30% of patients undergo tubal ligation
Prevention: removing the precursor

- Fallopian tube in situ lesions are precursor to “ovarian cancer”
Projected Outcome

- Conservatively in North America, up to 50% reduction in ovarian cancer deaths after 20 years
 - Up to 20% through salpingectomy at time of hysterectomy
 - Up to 20% through salpingectomy instead of tubal ligation
 - Up to 20% through risk-reducing BSO in patients with BRCA mutations
Clinical Implications

- We should change how hysterectomy is done with removal of the entire fallopian tube
 - Potential to prevent 20% of cancers
- We should consider fimbrectomy for tubal sterilization
 - Potential to prevent further 15-20% of cancers
Fimbriated ends of Fallopian Tubes are left in situ along with the Ovaries at Hysterectomy.
Will Surgeons Change

- September 2010:
- **British Columbia Ovarian Cancer Prevention Project**
 - Encourage Oophorectomy
 - Press release and the launch of an educational campaign
 - National media coverage
 - Distribution of learning materials to all practicing gynecologists in British Columbia (available on Web)
 - Encourage referral of all HGS cancer patients for BRCA testing (over 1/5 will test positive)

www.ovcare.ca
And what about the Pathology

- How should these low risk tubes be processed?
- 685 cases: tubes serially sectioned
 - 123 single tube
 - 562 both tubes
- 660 cases had no risk factors
 - 53 tics found: all in cases of patients with high grade serous cancer or with known BRCA mutation
Processing the tube

- Representative sections of the fimbriated end only in low risk women is appropriate.
Conclusion

- Simple changes in surgical practice may have the potential to have a significant impact on the incidence and mortality from high grade serous pelvic cancer.
- Minimal to no increase in resources or surgical morbidity
- Knowledge translation and ongoing population follow up is important
The world is watching!

Wide spread interest
- NCI
- Sweden
- Northern California,
- Texas,
- Ireland
- Saudi Arabia
- UK
- Germany
Etc. etc.
Future considerations:

- Potential for the development of a screen?
- Novel imaging technologies
- Fallopian tube is accessible via the lower genital tract
 - Secretions with unique protein signatures, micro RNA etc...
 - Host responses to tumor proteins
 - Cytology?
Ovarian cancer is becoming rare!

- Serous tumors originate in fallopian tube
- Endometroid and clear cell are cancers of endometriosis
- Some mucinous tumors are HPV related
Summary

- Change in understanding of the origin and natural history of epithelial ovarian cancers
- Implications for
 - Prevention
 - Screening and treatment
- Thank you
Acknowledgements:

- OvCare British Columbia
 - David Huntsman: The UBC Chew Professor
 - Blake Gilks
- Division of Gynecologic Oncology at UBC
 - All our fellows and residents
- Ovarian Cancer Canada