Bladder Cancer in 2020

Bernie Eigl MD FRCPC

Medical Oncologist

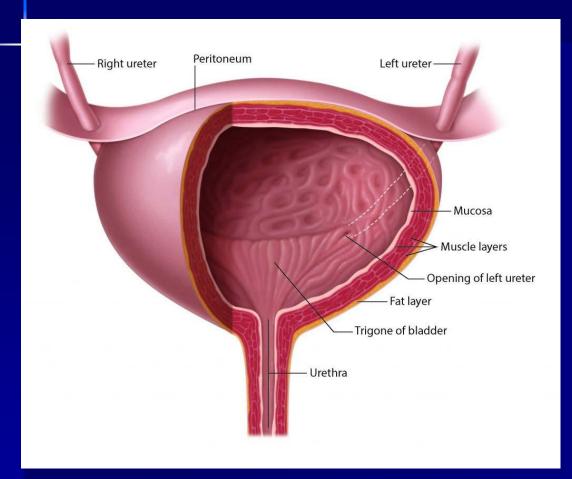
Director Provincial Clinical Trials Unit, BC Cancer

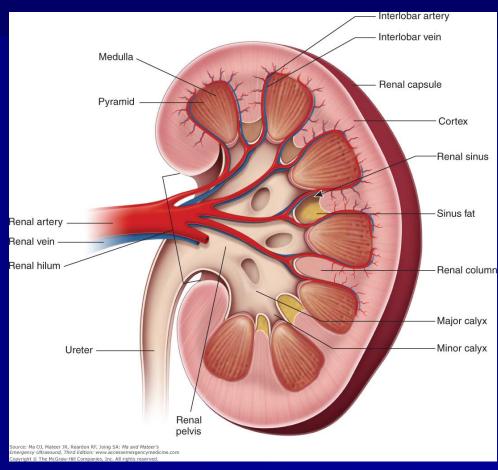
Clinical Associate Professor, UBC

Disclosures (A)

- Consulting/Honoraria: Astellas, AstraZeneca,
 Janssen, Merck, Pfizer, Roche
- Research Funding: Pfizer, Janssen
- Educational Support: Roche

Clinical Trials (Institution): >300 trials open per year with a wide variety of industrial and cooperative sponsors


Disclosures (B)


I am not a urologist. My expertise is in the management of advanced bladder cancer, so my comments on management of localized disease are "text-book"

Overview

- What is bladder cancer (aka Urothelial Carcinoma)?
- Basic epidemiology
- Clinical Presentation
- Diagnostic assessment
- Molecular Subtypes
- Management of:
 - Non-Muscle Invasive Bladder Cancer (NMIBC)
 - Muscle Invasive Bladder Cancer (MIBC)
 - Metastatic Bladder Cancer (mUC)

Anatomy of the Urinary Tract

What is urothelial cancer?

- Cancer arising from the transitional cell epithelium (lining) of the urinary tract structures:
 - Renal pelvis
 - Ureter
 - Bladder
 - Urethra

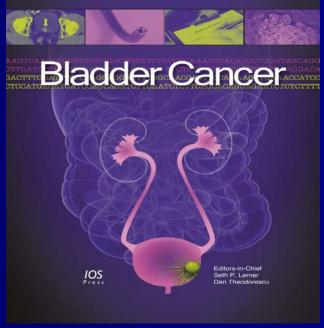


Image: www.bladdercancerjournal.com

Types of bladder cancer

Histology of the Urinary Bladder Lumen of bladder-Transitional epithelium Lamina propria Muscular layer (Detrusor Transitional muscle) epithelium Adventitia -Basement (with fat membrane cells) Lamina propria (a) Micrograph of the bladder wall (17X) (b) Epithelium lining the lumen of the bladder (360X)

Types of bladder cancer:

- Transitional cell carcinoma (TCC/UC)
- Squamous cell carcinoma
- Small-cell carcinoma (rare)
- Adenocarcinoma (very rare)
- Sarcoma (very rare)

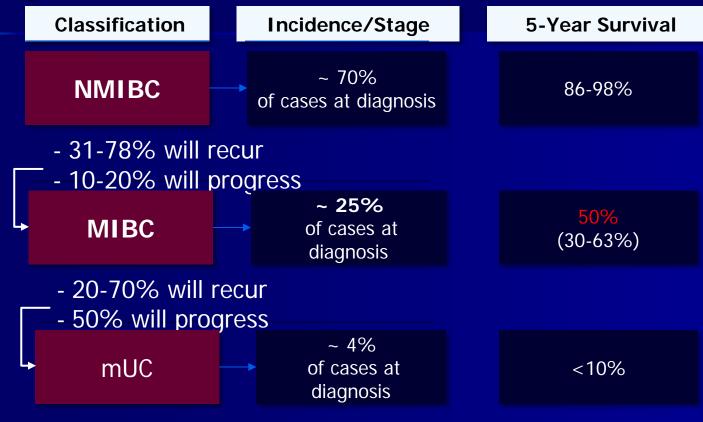
A little bit about epidemiology

- Men median age at diagnosis = 69
- Women median age at dx = 71
- Male:female nearly 2:1
- 2019 CDN 11,800 new cases 2,500 will die of the disease
 - Male #4 cause, #7 death
 - Female #11 cause, #11 death
- Majority of cases occur in developing regions of world (smoking/shisto/occupational)

Worldwide Bladder Cancer Statistics*							
	Global ¹ EU ¹ Asia ¹ US ²						
New Cases, n	429,793	124,118	148,568	76,960			
Deaths, n	165,084	40,635	69,294	16,000			

Risk Factors

- Smoking 35-50% of cases
 - Second hand smoke increases risk in women (1.5-2X)
- Aromatic amines:
 - 2-naphthylamine, benzidine, 4-aminobiphenyl, 4-nitrobiphenyl, and 2-amino-1-naphthol
- Occupations:
 - metal workers, painters, rubber industry, leather workers, textile workers, firefighters, miners cement workers, manufacturing of carpets, paints, plastics...
- Arsenic (e.g. Chile & Taiwan)


Risk Factors (non-TCC)

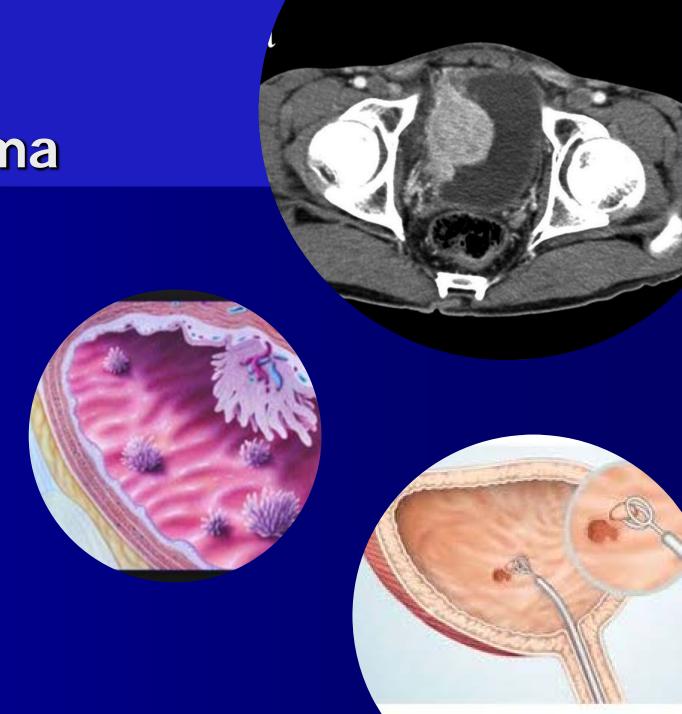
- Chronic cystitis
- Spinal cord injury catheters
- Calculi
- Schistosomiasis

Staging of Bladder Cancer (abridged)

- TaNoninvasive papillary carcinoma
- TisCarcinoma in situ: "flat tumor"
- T1 Tumor invades subepithelial connective tissue
- T2 Tumor invades muscle
- T2a Tumor invades superficial muscle (inner half)
- T2b Tumor invades deep muscle (outer half)
- T3 Tumor invades perivesical tissue
- T4 Tumor invades any of the following: prostate, uterus, vagina, pelvic wall, abdominal wall
- T4a Tumor invades prostate, uterus, vagina
- T4b Tumor invades pelvic wall, abdominal wall
- Regional lymph nodes (N)
 - Regional lymph nodes are those within the true pelvis; all others are distant lymph nodes.
- Distant metastasis (M)
- M0 No distant metastasis
- M1 Distant metastasis (a-node, b-visceral)

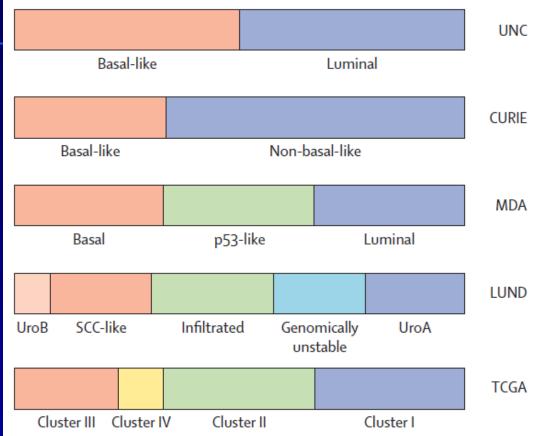
Incidence, Recurrence and Progression by Stage

NMIBC: Non-Muscle Invasive Bladder Cancer


MIBC: Muscle Invasive Bladder Cancer mUC: Metastatic Urothelial Carcinoma

Urothelial Carcinoma

Diagnostic


assessment

- Symptoms
 - Blood in the urine
 - Urinary frequency
 - Painful urination
 - Lower back pain
- Routine evaluations
 - History and physical exam
 - Urinalysis
- Further evaluations:
 - Urine cytology
 - Cystoscopy
 - CT urography

Molecular Subtype Classification

Bladder cancer

TCGA=The Cancer Genome Atlas. UNC=University of North California.

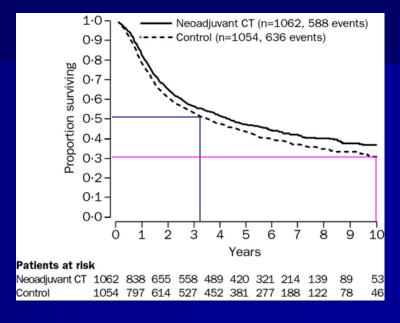
CURIE=Institut Curie. **SCC**=squamous cell carcinoma.

LUND=Lund University. **UroB**=Orobasal B

- Several institutions have established subtypes based upon gene expression profiling. This is becoming relevant for management decisions.
- E.g.
 - Basal subtypes often have squamous differentiation and are more often metastatic at diagnosis, respond to chemo
 - Luminal subtype are enriched for papillary features and more often have FGFR3 mutations (we have FGFR3 inhibitors now)
- The color bars indicate the subtype classification made by each institution.
- This is not yet a standard of care approach.

Non-Muscle-Invasive Bladder Cancer (NMIBC) Risk stratification and treatment

 NMIBC can be classified as low risk, intermediate risk, or high risk according to risk of recurrence and progression, and risk categories have been used to guide management.⁶


Risk	Risk Subtype	Recommend Treatment
Low-risk NMIBC (low-grade Ta tumor)		Single immediate postoperative instillation of intravesical chemotherapeutic drug
Intermediate-risk NMIBC (multifocal or multirecurrent low-grade Ta tumors)	None of the following factors: multiple tumors, tumor ≥3 cm, >1 recurrence per year, recurrence within 1 year after transurethral resection	Same as treatment for low-risk NMIBC
	One or two of the following factors: multiple tumors, tumor ≥3 cm, >1 recurrence per year after transurethral resection	Single immediate postoperative instillation of intravesical chemotherapeutic drug; induction plus maintenance treatment (1 year) with either an intravesical chemotherapeutic drug or BCG
	Three or more of the following factors: multiple tumors, tumour ≥3 cm, >1 recurrence per year, recurrence within 1 year after transurethral resection	Same as treatment for high-risk NMIBC
High-risk NMIBC (T1 [invasive into lamina propria], carcinoma in situ, or any high-grade tumor)		Restaging transurethral resection in 4–6 weeks; induction plus maintenance treatment (3 years) with BCG; consider early cystectomy if high-grade T1 tumor with any of the following: multiple tumors or large tumor, micropapillary histological variant, concomitant carcinoma in situ in bladder or prostatic urethra, or presence of lymphovascular invasion

Muscle Invasive Bladder Cancer

- T2 to T4a disease (N0)
 - Invasion through the muscle layer of the bladder or deeper into perivesical tissues
 - Can no longer be managed by local means
 - Neoadjuvant chemotherapy
 - Cystectomy is the mainstay of local therapy
 - Trimodality therapy (TURBT plus chemo/radiotherapy) for bladder sparing approach is also an option in selected patients.

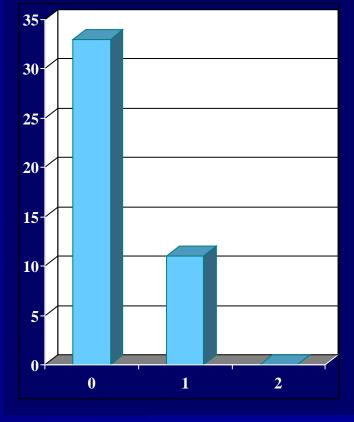
Bladder Cancer – Neoadjuvant Chemotherapy Metaanalysis of 11 trials (~3000 pts)

	(no. events	/no. entered)			
	CT	Control	O-E	Variance	Hazard Ratio
Single agent platinu	m				
Wallace [2]	59/83	50/76	2.74	27.18	
Martinez-Pineiro [3		38/59	0.33	20.11	
Raghavan [2]	34/41	37/55	5.85	16.51	 ■ -
Sub-total	136/186	125/190	8.92	63.80	HR=1.15 (95% CI 0.90-1.47)p=0.264
Platinum-based con	nbinations				
Cortesi unpublishe	d 43/82	41/71	-1.87	20.84	
Grossman [9]	98/158	108/159	-13.61	51.00	
Bassi [5]	53/102	60/104	-1.95	28.13	
MRC/EORTC [6]	275/491	301/485	-23.69	143.61	 - -
Malmström [8]	68/151	84/160	-9.97	37.94	
Sherif [8]	79/158	90/159	-6.37	42.18	
Sengeløv [7]	70/78	60/75	1.79	31.96	
Sub-total	686/1220	744/1213	-55.67	355.65	HR=0.86 (95% CI 0.77-0.95) p=0.003
					}
Total	822/1406	869/1403	-46.75	419.45	HR=0.89 (95% CI 0.81-0.98) p=0.022
-					!
					0 0.5 1 1.5 2
					NeoCT better Control better

Benefit for neoadjuvant cisplatin-based combination chemotherapy

13% reduction in risk of death; 5-6.5% absolute benefit at 5 years; HR 0.87

Locally Advanced Bladder Cancer


- T4b
- Multi disciplinary approach and individualized therapy
- Management includes chemotherapy, +/- radiation,+/- surgery
- Goal: decrease eventual morbidity of pelvic progression

Metastatic Disease: What is my prognosis, Doc?

Risk factors

Risk score	KPS	Visceral mets.	Median OS (mo)	5-y- OS	10-y- OS
0	≥ 80	No	33.0	33%	24%
1	≥80 < 80	Yes No	13.4	11%	6%
2	< 80	Yes	9.2	0	0

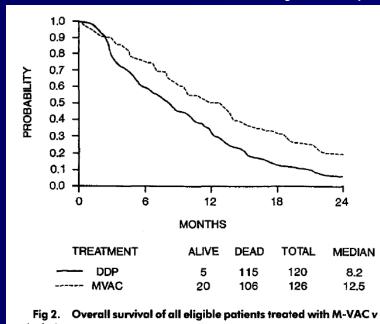
5-y-OS by No. RF

Bajorin et al. JCO 1998

When would we use chemotherapy for Bladder Cancer?

	Neo- Adjuvant	Adjuvant	Palliative
Early	No	No	N/A
Muscle invasive	Yes	Maybe	N/A
Metastatic	N/A	N/A	Yes

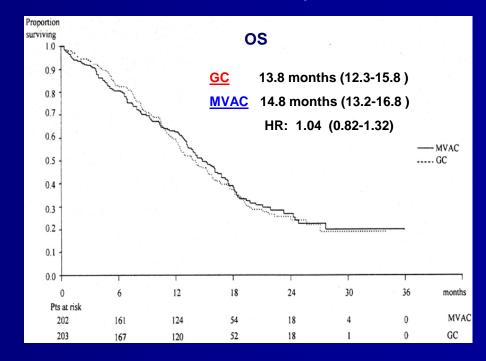
Metastatic Bladder Cancer (mUC)


- Untreated/Best Supportive Care:
 - Median OS is ~6-8 mo
- With Chemo:
 - median OS is still only ~12-14 mo!
- Challenges:
 - Elderly patients with comorbidities
 - Frequent renal impairment (age related, hydronephrosis)
 - Patients are often unwell due to the cancer

Treatment options for mUC are rapidly evolving!

- Current standards
- First Line:
 - Chemotherapy:
 - Platinum based (cisplatin preferable over carboplatin), most centers use Gemcitabine/Cisplatin
- Second Line:
 - Immunotherapy (current standard is pembrolizumab)
- Third line:
 - No established standard. Fit patients may get chemo (taxane) but no survival benefit
 - BUT: Enfortumab Vedotin, FGFR targeted therapies (e.g. erdafitinib), and combinations will likely soon be available.

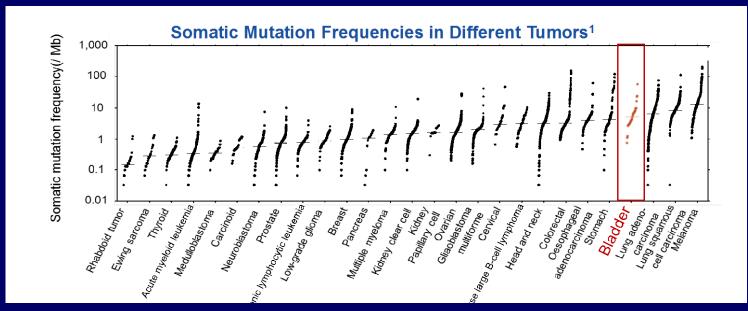
Cisplatin-based chemo for mUC


Methotrexate/Vinblastine/Adriamycin/Cisplatin

cisplatin.

- 50% with visceral disease
- Overall response rate: 39%
- Complete response rate: 13%

Gemcitabine/Cisplatin

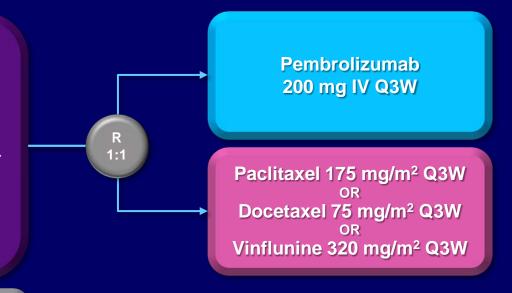

- 50% with visceral disease
- Overall response rate: 49.4% vs. 45.7%
- Complete response rate: 12.2% vs. 11.9%

Van der Maase JCO 2000

What are the toxicities of Cisplatin and Gemcitabine?

		,			
	World Health Organization Toxicity Grades			Grades	
	G	C	MV	MVAC	
	(% of p	atients)	(% of p	atients)	
Toxicity	3	4	3	4	
Hematologic					
Anemia	23.5	2.5	15.5	2.1	
Thrombocytopenia	28.5	28.5	7.7	12.9	
Neutropenia	41.2	29.9	17.1	65.2	
Nonhematologic		\sim			
Mucositis	1.0	0	1 <i>7.7</i>	4.2	
Nausea/vomiting	22.0	0	19.2	1.6	
Alopecia	10.5	0	54.2	1.0	
Infection	2.0	0.5	9.9	5.2	
Diarrhea	3.0	0	7.8	0.5	
Pulmonary	2.5	0.5	2.6	3.1	
Hematuria	4.5	0	2.3	0	
Constipation	1.5	0	2.6	0.5	
Hemorrhage	2.0	0	2.1	0	
State of consciousness	0.5	0	3.1	0.5	
Fever	0	0	3.1	0	

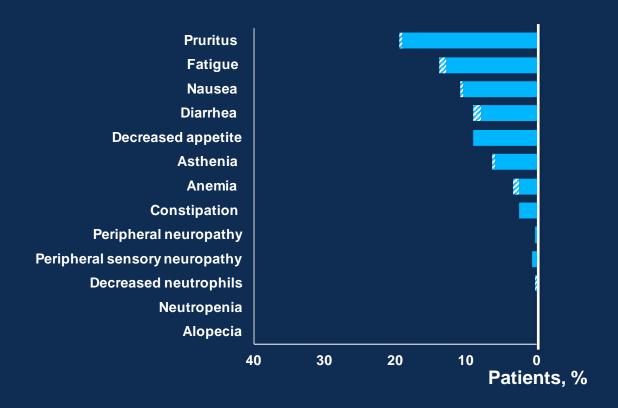
Immunotherapy - The Wave of Change



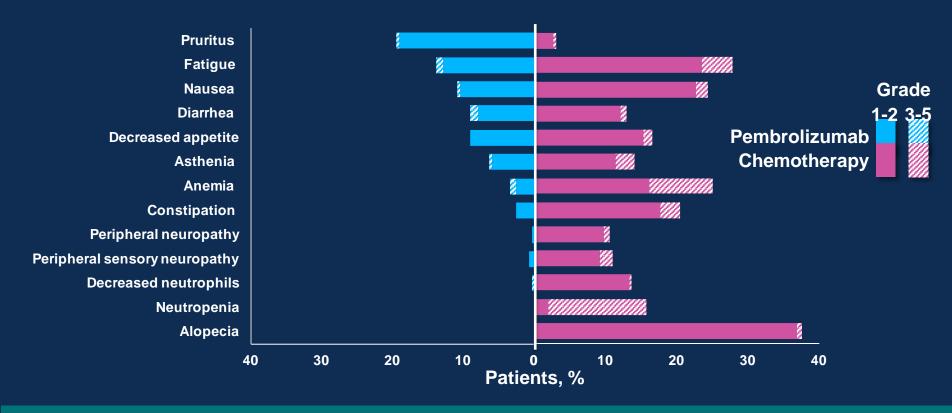
High mutation burden = more antigens and immunogenicity

Pembrolizumab: KEYNOTE-045

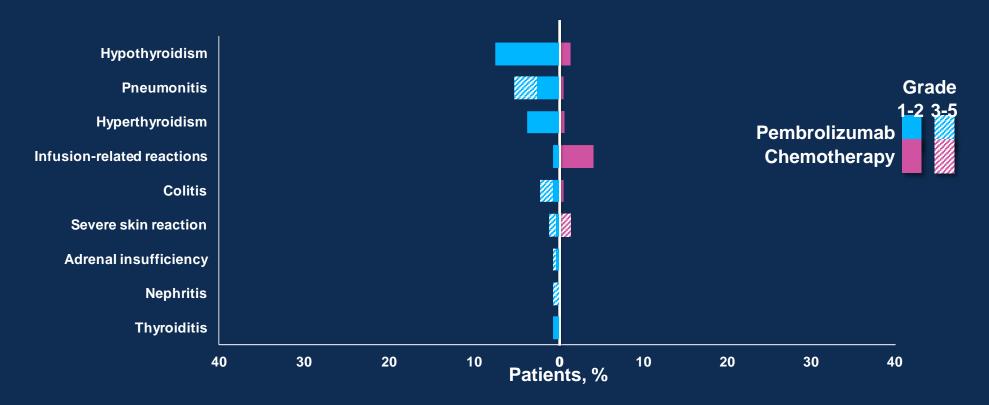
Key Eligibility Criteria


- Urothelial carcinoma of the renal pelvis, ureter, bladder, or urethra
- Transitional cell predominant
- PD after 1-2 lines of platinum-based chemotherapy or recurrence <12 mo after perioperative platinum-based therapy
- ECOG performance status 0-2
- Provision of tumor sample for biomarker assessment

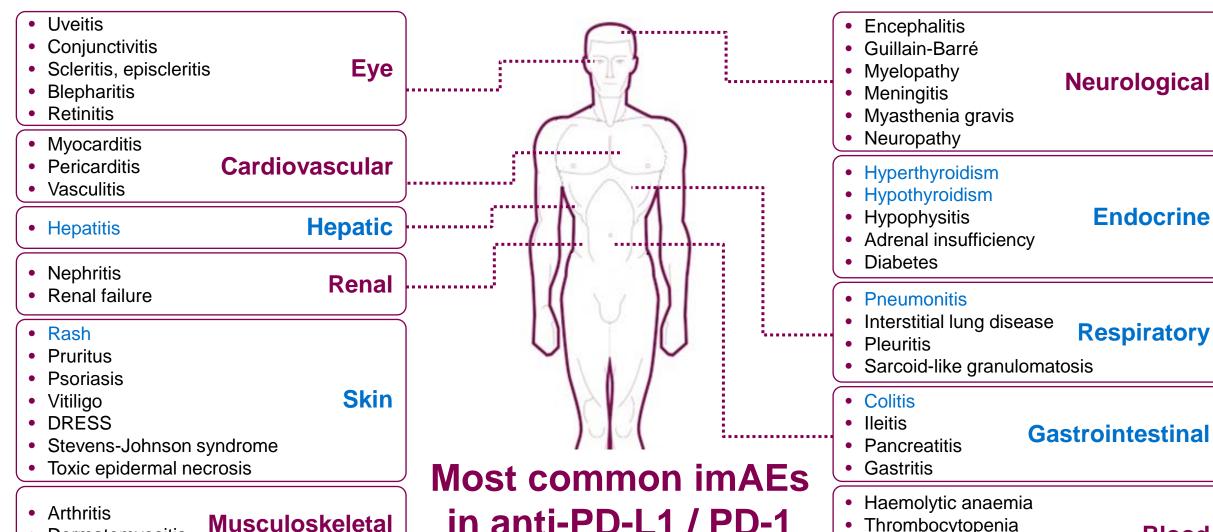
Stratification Factors


- ECOG performance status (0/1 vs 2)
- Hemoglobin level (<10 vs ≥10 g/dL)
- Liver metastases (yes vs no)
- Time from last chemotherapy dose (<3 vs ≥3 mo)
- Dual primary end points: OS and PFS^a
- Key secondary end points: ORR, DOR, safety
- Response: RECIST v1.1 by blinded, independent central review
- Both unselected and biomarker-selected patients

Treatment-Related AEs Occurring in ≥10% Patientsa



Treatment-Related AEs Occurring in ≥10% Patients^a


^aOf patients in either treatment arm. 7.5% febrile neutropenia in the chemotherapy arm. <u>Da</u>ta cutoff date: January 18, 2017.

AEs of Interest^a Occurring in ≥2 Patients^b

^aBased on a list of terms specified by the sponsor and included regardless of attribution to study treatment or immune relatedness by the investigator; related terms included. ^bIn either treatment arm.

Data cutoff date: January 18, 2017.

in anti-PD-L1 / PD-1 studies in UC³⁻⁶

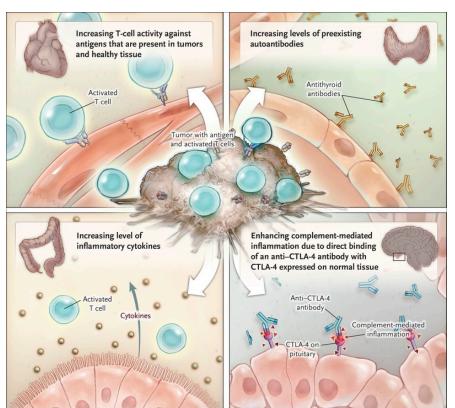
Neurological

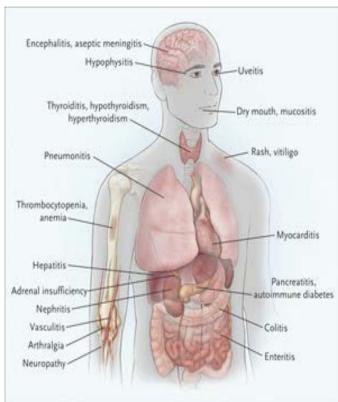
Endocrine

- Sarcoid-like granulomatosis
 - **Gastrointestinal**

- Thrombocytopenia
- Neutropenia
- Haemophilia

Blood


DRESS, drug reaction with eosinophilia and systemic symptoms; imAEs, immune-mediated adverse events; PD-1, programmed cell death-1; PD-L1, programmed cell death ligand-1; UC, urothelial carcinoma


Dermatomyositis

1. Michot JM, et al. Eur J Cancer 2016;54:139-148. 2. Champiat S, et al. Ann Oncol 2016;27:559-574. 3. Rosenberg JE, et al. Lancet 2016;387:1909-1920. 4. Balar AV, et al. Lancet Oncol 2017;18:1483-1492. 5. Powles T, et al. JAMA Oncol 2017;3:e172411. 6. Sharma P, et al. Lancet Oncol 2017;18:312-322.

Resources for understanding IO toxicities

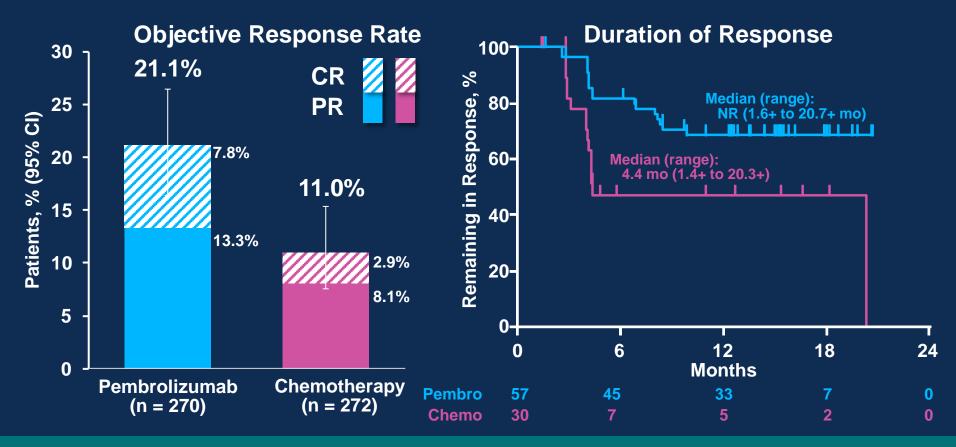

Postow et al. NEJM 2018; 378:158-168

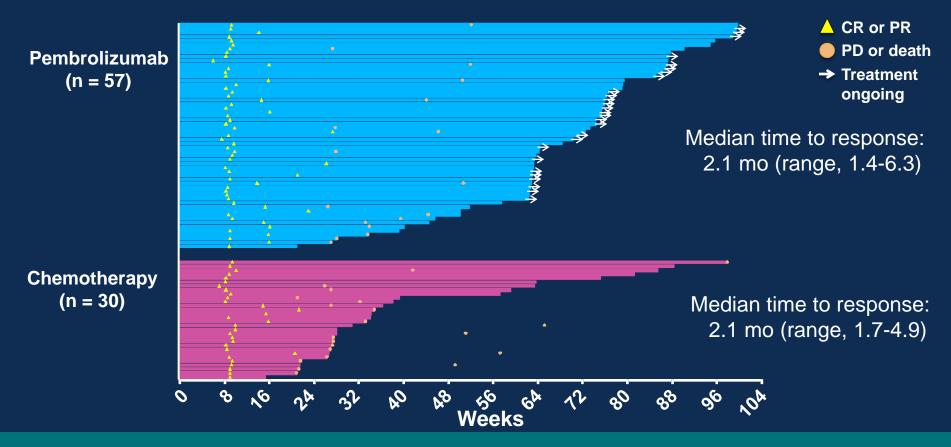
Table 2. Ten Questions Relevant to t Checkpoint Blockade.	he Management of Immune-Related Adverse Events in Patients Treated with Immune
Questions about Immune-Related Adverse Events	Comments
Why do they occur?	The precise pathophysiology is unknown. Translational studies in patients with immune-related adverse events have shown that T-cell, antibody, and cytokine responses may be involved.
How are they generally treated?	No prospective trials have defined the best treatment approaches, and recommen dations are based on consensus opinion. Immunosuppression is used to reduce the excessive state of temporary inflammation. Glucocorticoids are usually the first-line immunosuppressive agent. Additional immunosuppressive agents can be used if glucocorticoids are not initially effective.
When do they occur?	Immune-related adverse events usually start within the first few weeks to months after treatment but can occur anytime, even after treatment discontinuation. Dermatologic adverse events are usually the first to appear.
Why do they occur in some patients and not others?	The reason for the occurrence of immune-related adverse events only in certain patients is unknown. Some studies are investigating whether such factors as germline genetics and the composition of host microbiota are related to risk.
Are they associated with the efficacy of immune check-point blockade?	Conflicting data are available regarding whether the occurrence of immune-related adverse events is associated with improved treatment efficacy. The development of immune-related adverse events is not required for treatment benefit. Specific adverse events (e.g., vitiligo) may be more clearly associated with treatment efficacy.
Does immunosuppression to treat such adverse events reduce the antitumor efficacy of treat- ment?	Clinical outcomes are similar in patients who require immunosuppression to treat immune-related adverse events and in those who do not require such treatment. Beneficial responses can persist despite the use of immunosuppression to treat immune-related adverse events.
Are there unintended effects of immunosuppression to treat adverse events?	Side effects of glucocorticoid use (e.g., hyperglycemia, edema, anxiety, and latro- genic adrenal insufficiency) can occur. Immunosuppression is a risk factor for subsequent opportunistic infections.
Is it safe to restart treatment after a major adverse event?	Retrospective studies have shown that immune-related adverse events associated with one class of agent (e.g., anti-CTLA-4) may not necessarily recur during subsequent treatment with another agent (e.g., anti-PD-1). The safety of retreatment probably depends on the severity of the initial immune-related adverse event.
Is it necessary to restart treatment after resolution of an adverse event?	Retrospective data suggest that patients who have had a favorable response to immune checkpoint blockade and then discontinue treatment because of immune-related adverse events generally maintain responses. Prospective data are needed to address whether restarting immunotherapy is necessary.
Is it safe to treat patients at poten- tially increased risk for such adverse events?	Patients at increased risk for immune-related adverse events (e.g., preexisting auto- immune disease) may still benefit from immune checkpoint blockade. Age alone should not be used to exclude patients from treatment, since benefit appears to be similar regardless of age.

Objective Response and Response Duration

Assessed per RECIST v1.1 by blinded, independent central review.

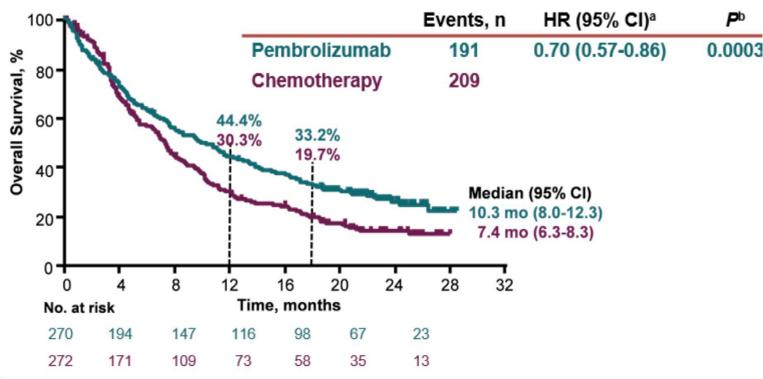
Data cutoff date: January 18, 2017.

Progression-Free Survival: Total


	Events, n	HR (95% CI)	P
Pembro	270	0.96	0.32
Chemo	272	(0.79-1.16)	0.02
Median (95% CI): 2.1 mo (2.0-2.2)			

Assessed per RECIST v1.1 by blinded, independent central review.

Data cutoff date: January 18, 2017.


3.3 mo (2.4-3.5)

Time to Response

^aFor patients who achieved a complete or partial response. Data cutoff date: January 18, 2017.

KEYNOTE-045 Overall Survival – updated analysis

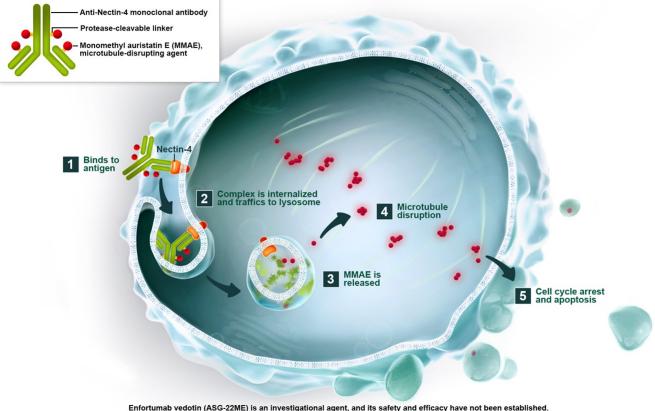
Data cutoff: May 19, 2017.

^aBased on Cox regression model with treatment as a covariate stratified by ECOG performance status (0/1 vs 2), liver metastases (yes vs no), hemoglobin (<10 vs ≥10 g/s and time from completion of chemotherapy (<3 vs ≥3 mo).

^bOne-sided *P* value based on stratified log-rank test.

Bottom Line on 2nd Line

- Level I data for pembrolizumab OS benefit
 - BUT only a 20% response rate
- Promising activity for other PD-X agents
- Excellent tolerability
- QOL benefits also seen


Conclusion

- Bladder Cancer is a common disease
 - Risk factor modification will be important in decreasing incidence
- Localized disease has a very high cure/control rate
 - Early detection/management is key
- Management is highly multidisciplinary
- Immunotherapy and other emerging treatments are changing outcomes!

Thank you!

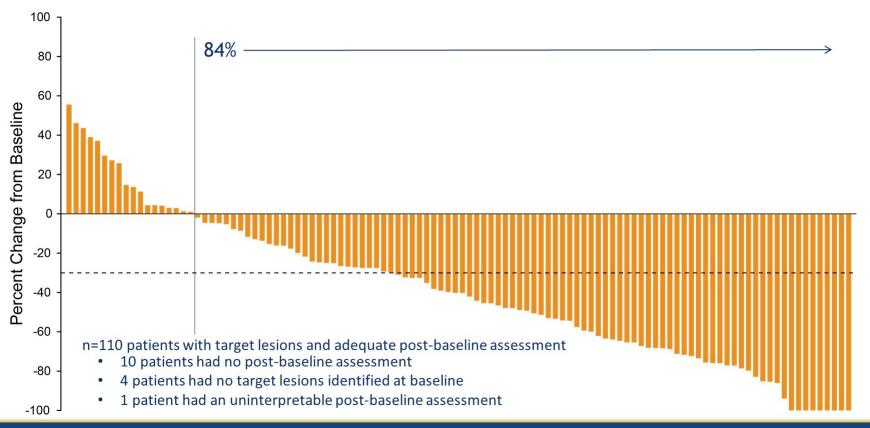
Emerging Therapies

Enfortumab Vedotin: Nectin-4 Targeted Therapy Proposed Mechanism of Action

Enfortumab vedotin (ASG-22ME) is an investigational agent, and its safety and efficacy have not been established.

Enfortumab vedotin is being developed in collaboration with Astellas Pharma Inc. ©2018 Seattle Genetics, Inc. All rights reserved.

PRESENTED AT:


#ASCO19

Slides are the property of the author, permission required for reuse.

PRESENTED BY: Daniel P. Petrylak

3

EV-201: Cohort 1 Change in Tumor Measurements per BICR

2019 **ASCO**

#ASCO19

PRESENTED BY: Daniel P. Petrylak