Management of Well Differentiated Thyroid Cancer

November 18th, 2017
Family Practice Oncology CME Day

Jonn Wu BMSc MD FRCPC
Radiation Oncologist, Vancouver Centre
Chair, Provincial H&N Tumour Group, BCCA
Clinical Associate Professor, UBC
Disclosure(s)

Genzyme/Sanofi – Advisory Board, Research Grant
Objectives

By the end of this session, participants will be able to describe, for well differentiated thyroid carcinomas:

1. the excellent prognosis for most patients;
2. the general management of thyroid cancers; and
3. management of thyroxine for thyroid cancer patients.
Outline

Introduction, Epidemiology
Diagnosis, Surgical Management
Staging and Risk Assessment
Radioiodine Remnant Ablation and Therapy
Thyrotropin Suppression Therapy
Surveillance
Future Directions, Clinical Trials
Outline

Introduction, Epidemiology
Diagnosis, Surgical Management
Staging and Risk Assessment
Radioiodine Remnant Ablation and Therapy
Thyrotropin Suppression Therapy
Surveillance
Future Directions, Clinical Trials
Scope of the Problem

- Relatively uncommon (1%)
 - 50,000 cases in US
 - 230,000 breast
 - 230,000 lung
- 75% are Females
- Incidence tripled:
 - 1975: 4.9 / 100,000
 - 2009: 14.3 / 100,000
- Increasing 10% per year
- More “micro-carcinomas” (< 1.0 cm)
 - 1988: 25%
 - 2008: 39%

Scope of the Problem

- **Canada:**
 - Incidence: Approximately 6,300 in 2015
 - Deaths: 185 deaths in 2010

- **BC (2007):**
 - New cases: 68 men, 211 women
 - Deaths: 5 men and 9 women
 - Most deaths in patients over 60 yrs
Scope of the Problem

Scope of the Problem

Thyroid Cancer: Types

• 90% Well differentiated tumours
 • arising from follicular epithelial cells
 • 80% papillary +/- follicular elements
 • 10% pure follicular (incl Hurthle cell)

• 4% Medullary

• 5% Anaplastic
Thyroid Cancer: Survival

5 Year Survival:

- Papillary ca 98%
- Follicular ca 94%
- Medullary ca 80%
- Anaplastic ca < 5%

Relative rarity and high survival mean that there are very few prospective randomised trials so most management is based on retrospective data.

BC Cancer Agency
CARE + RESEARCH
An agency of the Provincial Health Services Authority

Risk Factors

- Majority are sporadic
- Iodine deficiency
- Radiation exposure
- Family history
- Rare familial disorders: Gardner’s syndrome, Cowden’s disease, familial polyposis, MEN2, Werner Syndrome
Outline

Introduction, Epidemiology
Diagnosis, Surgical Management
Staging and Risk Assessment
Radioiodine Remnant Ablation and Therapy
Thyrotropin Suppression Therapy
Surveillance
Future Directions, Clinical Trials
Clinical Presentation

- Palpable thyroid mass
- Palpable cervical lymphadenopathy
- Incidental finding on cross sectional imaging or ultrasound
Thyroid Nodule

** Ultrasound + Fine Needle Aspiration (FNA) **

- Iodine Scan: only if thyrotoxic
- 15% inadequate – repeat
- Adequate specimen false +ve & -ve rates of 5%
- Ultrasound more sensitive than CT – but operator dependent
- Incidental nodules (<1cm) found > 50% of individuals
- These are rarely malignant

BC Cancer Agency
CARE + RESEARCH
An agency of the Provincial Health Services Authority

RECOMMENDATION 6
Thyroid sonography with survey of the cervical lymph nodes should be performed in all patients with known or suspected thyroid nodules.
(Strong recommendation, High-quality evidence)

RECOMMENDATION 7
FNA is the procedure of choice in the evaluation of thyroid nodules, when clinically indicated.
(Strong recommendation, High-quality evidence)

RECOMMENDATION 9
Thyroid nodule FNA cytology should be reported using diagnostic groups outlined in the Bethesda System for Reporting Thyroid Cytology.
(Strong recommendation, Moderate-quality evidence)
Management

Surgery – Primary Treatment

Adjuvant Radiation

- Radioiodine (131-Iodine)
- External Beam Radiation

Thyroxine

** No Prospective Randomized Trials **

Cooper et al, Thyroid. 2006 Feb;16(2):109-42.

RECOMMENDATION 12
If a cytology result is diagnostic for primary thyroid malignancy, surgery is generally recommended.

(Strong recommendation, Moderate-quality evidence)
Primary therapy for thyroid cancer

1. (near) Total thyroidectomy +/- Central Neck Dissection
2. Lobectomy + isthmusectomy
3. And/Or Neck dissection

Cooper et al, Thyroid. 2006 Feb;16(2):109-42.

(RECOMMENDATION 12)
If a cytology result is diagnostic for primary thyroid malignancy, surgery is generally recommended. (Strong recommendation, Moderate-quality evidence)
Surgical Management

Neck Dissection – Central Compartment vs Lateral

- Might improve local control
- 35% gross involvement, 80% microscopic
- +LN increases risk of recurrence
- +LN doesn’t reduce survival rates

RECOMMENDATION 36

(A) Therapeutic central-compartment (level VI) neck dissection for patients with clinically involved central nodes should accompany total thyroidectomy to provide clearance of disease from the central neck.

(B) Prophylactic central-compartment neck dissection (ipsilateral or bilateral) should be considered in patients with papillary thyroid carcinoma with clinically uninvolved central neck lymph nodes (cN0) who have advanced primary tumors (T3 or T4) or clinically involved lateral neck nodes (cN1b), or if the information will be used to plan further steps in therapy.

(Weak recommendation, Low-quality evidence)

RECOMMENDATION 37

Therapeutic lateral neck compartmental lymph node dissection should be performed for patients with biopsy-proven metastatic lateral cervical lymphadenopathy.

(Strong recommendation, Moderate-quality evidence)
EVERYONE needs Thyroxine

- **T4 (levothyroxine)**
 - Begin with 50-75 mcg
 - Average therapeutic dose is **125-200 mcg**
 - 4-6 weeks to reach steady state

Replacement vs Suppressive Therapy
(more later)
Outline

Introduction, Epidemiology
Diagnosis, Surgical Management
Staging and Risk Assessment
Radioiodine Remnant Ablation and Therapy
Thyrotropin Suppression Therapy
Surveillance
Future Directions, Clinical Trials
Staging, Risk Assessment

- Risk of **Recurrence**
 - ATA Risk Stratification

- Risk of **Death**
 - TNM, AJCC
 - AMES, AGES
 - MACIS
Staging, Risk Assessment

Risk of Recurrence – ATA Risk Stratification

<table>
<thead>
<tr>
<th>ATA low risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papillary thyroid cancer (with all of the following):</td>
</tr>
<tr>
<td>• No local or distant metastases;</td>
</tr>
<tr>
<td>• All macroscopic tumor has been resected</td>
</tr>
<tr>
<td>• No tumor invasion of loco-regional tissues or structures</td>
</tr>
<tr>
<td>• The tumor does not have aggressive histology (e.g., tall cell, hobnail variant, columnar cell carcinoma)</td>
</tr>
<tr>
<td>• If 131I is given, there are no RAI-avid metastatic foci outside the thyroid bed on the first posttreatment whole-body RAI scan</td>
</tr>
<tr>
<td>• No vascular invasion</td>
</tr>
<tr>
<td>• Clinical N0 or ≤ 5 pathologic N1 micrometastases ($<0.2 \text{ cm}$ in largest dimension)a</td>
</tr>
</tbody>
</table>

| Intrathyroidal, encapsulated follicular variant of papillary thyroid cancera |
| Intrathyroidal, well differentiated follicular thyroid cancer with capsular invasion and no or minimal ($<4 \text{ foci}$) vascular invasiona |
| Intrathyroidal, papillary microcarcinoma, unifocal or multifocal, including $BRAF^{V600E}$ mutated (if known)a |

<table>
<thead>
<tr>
<th>ATA intermediate risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscopic invasion of tumor into the perithyroidal soft tissues</td>
</tr>
<tr>
<td>RAI-avid metastatic foci in the neck on the first posttreatment whole-body RAI scan</td>
</tr>
<tr>
<td>Aggressive histology (e.g., tall cell, hobnail variant, columnar cell carcinoma)</td>
</tr>
<tr>
<td>Papillary thyroid cancer with vascular invasion</td>
</tr>
<tr>
<td>Clinical N1 or >5 pathologic N1 with all involved lymph nodes $<3 \text{ cm}$ in largest dimensiona</td>
</tr>
<tr>
<td>Multifocal papillary microcarcinoma with ETE and $BRAF^{V600E}$ mutated (if known)a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATA high risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macroscopic invasion of tumor into the perithyroidal soft tissues (gross ETE)</td>
</tr>
<tr>
<td>Incomplete tumor resection</td>
</tr>
<tr>
<td>Distant metastases</td>
</tr>
<tr>
<td>Postoperative serum thyroglobulin suggestive of distant metastases</td>
</tr>
<tr>
<td>Pathologic N1 with any metastatic lymph node $\geq 3 \text{ cm}$ in largest dimensiona</td>
</tr>
<tr>
<td>Follicular thyroid cancer with extensive vascular invasion ($>4 \text{ foci of vascular invasion}$)a</td>
</tr>
</tbody>
</table>
Staging, Risk Assessment

Risk of Recurrence – ATA Risk Stratification

Table 12. American Thyroid Association Risk Stratification System: Clinical Outcomes Following Total Thyroidectomy and Radioiodine Remnant Ablation or Adjuvant Therapy

<table>
<thead>
<tr>
<th>ATA risk</th>
<th>Study</th>
<th>N</th>
<th>Biochemical incomplete, %</th>
<th>Structural incomplete, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Tuttle et al. (538)</td>
<td>86</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Castagna et al. (542)</td>
<td>91</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Vaisman et al. (539)</td>
<td>88</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ptoioa et al. (543)</td>
<td>78</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Tuttle et al. (538)</td>
<td>57</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Vaisman et al. (539)</td>
<td>63</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Ptoioa et al. (543)</td>
<td>52</td>
<td>14</td>
<td>34</td>
</tr>
<tr>
<td>High</td>
<td>Tuttle et al. (538)</td>
<td>14</td>
<td>14</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Vaisman et al. (539)</td>
<td>16</td>
<td>12</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Ptoioa et al. (543)</td>
<td>31</td>
<td>13</td>
<td>56</td>
</tr>
</tbody>
</table>

Table 11. ATA 2009 Risk Stratification System with Proposed Modifications

- **ATA low risk**: Papillary thyroid cancer (with all of the following):
 - No local or distant metastases
 - All macroscopic tumor has been resected
 - No tumor invasion of loco-regional tissues or structures
 - The tumor does not have aggressive histology (e.g., tall cell, hobnail variant, colloid cell carcinoma)
 - If ¹³¹I is given, there are no RAI-avid metastatic foci outside the thyroid bed on the first postoperative whole-body RAI scan
 - No vascular invasion
 - Clinical N0 or occasional microscopic N1 micrometastases (<0.2 cm in largest dimension) in the neck on the first postoperative whole-body RAI scan
 - Infrathyroid, encapsulated follicular variant of papillary thyroid cancer
 - Infrathyroid, well-differentiated follicular thyroid cancer with capsular invasion and no or minimal (≤4 micrometers) vascular invasion
 - Infrathyroid, papillary microcarcinoma, unifocal or multifocal, including RET/PTC or BRAF V600E mutated (if known)

- **ATA intermediate risk**: Microscopic invasion of tumor into the perithyroid soft tissues

- **ATA high risk**: Microscopic invasion of tumor into the perithyroid soft tissues
 - RAI-avid metastatic foci in the neck on the first postoperative whole-body RAI scan
 - Papillary thyroid cancer with vascular invasion
 - Clinical N1 or ≥3 pathologic N1 with all involved lymph nodes ≥3 cm in largest dimension
 - Multifocal papillary microcarcinomas with ETE and BRAF V600E mutated (if known)
 - Incompletely resected tumors

Recurrence Vs Survival?
Staging, Risk Assessment

TABLE 10. AJCC 7TH EDITION/TNM CLASSIFICATION SYSTEM FOR DIFFERENTIATED THYROID CARCINOMA

<table>
<thead>
<tr>
<th>Definition</th>
<th>T0</th>
<th>T1a</th>
<th>T1b</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No evidence of primary tumor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor ≤1 cm, without extrathyroidal extension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor >1 cm but ≤2 cm in greatest dimension, without extrathyroidal extension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor >2 cm but ≤4 cm in greatest dimension, without extrathyroidal extension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor >4 cm in greatest dimension limited to the thyroid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any size tumor with minimal extrathyroidal extension (e.g., extension into sternohyoid muscle or perithyroidal soft tissues)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4a</td>
<td>Any size extending beyond the thyroid capsule to invade subcutaneous soft tissues, larynx, trachea, esophagus, or recurrent laryngeal nerve.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4b</td>
<td>Any size invading prevertebral fascia or encasing carotid artery or mediastinal vessels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>No metastatic nodes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1a</td>
<td>Metastases to level VI (pretracheal, paratracheal, and prelaryngeal/Delphian lymph nodes).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1b</td>
<td>Metastases to unilateral, bilateral, or contralateral cervical (levels I, II, III, IV, or V) or retropharyngeal or superior mediastinal lymph nodes (level VII)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0</td>
<td>No distant metastases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>Distant metastases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient age <45 years old at diagnosis</th>
<th>I</th>
<th>Any T</th>
<th>Any N</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient age ≥45 years old at diagnosis</th>
<th>I</th>
<th>T1a</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>IVa</td>
<td>T1a</td>
<td>N1a</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>IVb</td>
<td>T1b</td>
<td>N1a</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>IVc</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
<td></td>
</tr>
</tbody>
</table>

Papillary carcinoma

Follicular carcinoma

SEER 1988-2001
Staging, Risk Assessment

AGES
- Age: >45 years of age
- Grade: problematic
- Extrathyroidal (soft tissue) extension
- Size: 2cm (6%) vs 7cm (50%) mortality

AMES
- Age
- Metastasis
- Extrathyroidal extension
- Size

Baudin and Schlumberger, Lancet Oncology, 2007

Brierley et al Clin Endocrinology 2005

< 40 yrs
Metastases <1cm

< 40 yrs
Metastases >1cm

> 40 yrs
Metastases <1cm

> 40 yrs
Metastases >1cm

Fig. 2 Cumulative incidence of cause-specific survival and local–regional relapse-free rate by age.
Staging, Risk Assessment

What we use at BCCA:

• MACIS
 – 3.1 (<40yo) or 0.08 x age (if 40 or more years old)
 – 0.3 x tumor size (in cm)
 – +1 if incompletely resected
 – +1 if locally invasive
 – +3 if distant metastases

• MACIS – 20yr Disease Specific Mortality
 <6.0 = 1%
 6.0 – 6.99 = 11%
 7.0 – 7.99 = 44%
 >8 = 76%

No Lymph Nodes!
Outline

Introduction, Epidemiology
Diagnosis, Surgical Management
Staging and Risk Assessment
Radioiodine Remnant Ablation and Therapy
Thyrotropin Suppression Therapy
Surveillance
Future Directions, Clinical Trials
Adjuvant Therapy

- Radioiodine (131-I) → **microscopic disease**
 - Ablation: help with FU, 30 mCi
 - Therapy: microscopic disease, 60-200 mCi
- External beam RT → **macroscopic disease**
- Thyroxine
Adjuvant Therapy

Radioiodine (131-I) – who should be treated?

- No randomized trials
- 131-I reduces risk of recurrence (large retrospective series)
- Evidence of survival benefit? – controversial (large retrospective series)

- **Two schools of thought**
 - Treat more! (Mazzaferri et al)
 - Treat less! (Hay et al)

- **BCCA – Weekly Provincial Thyroid Conference**
 - MACIS score > 6.0 = Treat
 - MACIS score 5.0 to 6.0 = Review at Provincial Thyroid Conference
 - Treating fewer patients
 - Using lower doses for Ablation: 30 mCi vs 60 or 100 mCi
 - More outpatient therapy
Radioiodine (131-I) Side Effects

- Fatigue
- Xerostomia
- Dysgeusia
- Sialadenitis
- Transient hypogonadism (spermatopenia)
- Myelosuppression (transient versus permanent)
- Hypothetical risk of aplastic anaemia and leukaemia
 - Doses >1000mCi (usual dose 80-150mCi)

Adjuvant Therapy

RECOMMENDATION 58

A posttherapy WBS (with or without SPECT/CT) is recommended after RAI remnant ablation or treatment, to inform disease staging and document the RAI avidity of any structural disease.

(Strong recommendation, Low-quality evidence)
Adjuvant Therapy

- Radioiodine (131-I) → microscopic disease
 - Ablation of remnant
 - Therapy of disease
- External beam RT → macroscopic disease
- Thyroxine
- Chemotherapy, targeted agents
Adjuvant Therapy

External Beam Radiotherapy
• Gross (macroscopic) disease
• Unresectable gross disease
• Gross disease not responding to 131-I
• 5 to 7 weeks, daily treatment

Sequelae:
• Xerostomia, altered taste, esophagitis, pharyngitis, laryngitis, fatigue, dry/moist desquamation

RECOMMENDATION 60
There is no role for routine adjuvant EBRT to the neck in patients with DTC after initial complete surgical removal of the tumor.
(Strong recommendation, Low-quality evidence)
Adjuvant Therapy

- Radioiodine (131-I) \rightarrow microscopic disease
 - Ablation of remnant
 - Therapy of disease
- External beam RT \rightarrow macroscopic disease
- Thyroxine
Adjuvant Therapy

Thyroxine - Rationale:
1. Replacement Therapy → FT4
2. Suppressive Therapy → TSH

Other Notes:
- 4 - 6 weeks to equilibrate
- Measure FT4 and TSH
 - FT4: Upper limits of normal
 - TSH: <0.1 to 2.0 mU/L
- TSH Suppression: How low do you go?
Adjuvant Therapy

TSH Suppression: How low do you go?

- Low Risk: 0.5 to 2.0 mU/L
- Intermediate Risk: 0.1 to 0.5 mU/L
- High Risk: < 0.1 mU/L

• BCCA: Generally < 1.0 mU/L, depending on risk category
 - Evidence strongest for High Risk

Why not < 0.1 mU/L for everyone?

• Low TSH = High FT4
• Prolonged hyperthyroidism
 - atrial fibrillation
 - cardiac hypertrophy and dysfunction
 - accelerated osteoporosis
• Balance risk of recurrence vs hyperthyroidism
Outline

Introduction, Epidemiology
Diagnosis, Surgical Management
Staging and Risk Assessment
Radioiodine Remnant Ablation and Therapy
Thyrotropin Suppression Therapy
Surveillance
Future Directions, Clinical Trials
Surveillance

- **Clinical exam:** q6-12 months
- **Blood tests:** q3-12 months - I do all FOUR:
 1. FT4
 2. TSH
 3. Tg (> 98% sensitivity)
 4. Anti-Tg-Ab
- **Imaging**
 - **US Neck:** Yes or No? How frequent?
 - **5 mCi 131-I Scan → Not Anymore**
 - Others: CXR, CT Neck, TSH stimulated PET/CT

RECOMMENDATION 65

(A) Following surgery, cervical US to evaluate the thyroid bed and central and lateral cervical nodal compartments should be performed at 6–12 months and then periodically, depending on the patient’s risk for recurrent disease and Tg status.

(D) Low-risk patients who have had remnant ablation, negative cervical US, and a low serum Tg on thyroid hormone therapy in a sensitive assay (<0.2 ng/mL) or after TSH stimulation (Tg <1 ng/mL) can be followed primarily with clinical examination and Tg measurements on thyroid hormone replacement.

(Weak recommendation, Low-quality evidence)

RECOMMENDATION 66

After the first posttreatment WBS performed following RAI remnant ablation or adjuvant therapy, low-risk and intermediate-risk patients (lower risk features) with an undetectable Tg on thyroid hormone with negative anti-Tg antibodies and a negative US (excellent response to therapy) do not require routine diagnostic WBS during follow-up.

(Strong recommendation, Moderate-quality evidence)

RECOMMENDATION 67

(A) Diagnostic WBS, either following thyroid hormone withdrawal or rhTSH, 6–12 months after adjuvant RAI therapy can be useful in the follow-up of patients with high or intermediate risk (higher risk features) of persistent disease (see risk stratification system, section B19) and should be done with 123I or low activity 131I.

(Strong recommendation, Low-quality evidence)
Recurrence

Gross disease:
- If resectable: Surgery
- Not resectable: 131-I +/- EBRT
- If non-iodine-avid: EBRT

Rising Tg – No gross disease?
- Empiric dose (100-200 mCi) 131-I ** NOT a 5 mCi SCAN **
- TSH-stimulated PET scan

I-131-resistant disease:
- Chemotherapy: doxorubicin
- Tyrosine Kinase Inhibitors: vandetanib, sorafenib, lenvatinib
 • Sequelae: diarrhea, fatigue, HPT, hepatotoxicity, skin changes, nausea, dysgeusia, anorexia, thrombosis, heart failure,
Outline

Introduction, Epidemiology
Diagnosis, Surgical Management
Staging and Risk Assessment
Radioiodine Remnant Ablation and Therapy
Thyrotropin Suppression Therapy
Surveillance
Future Directions, Clinical Trials
Future Directions

Clinical Trials
- Tyrosine Kinase Inhibitors: OS, QOL

Molecular Markers
- Diagnosis, prognosis, therapeutic targets

Improved Risk Stratification
- Who truly needs 131-I? US?
- Which LNs to biopsy?
- Minimally invasive follicular variant of papillary carcinoma in the absence of angio-invasion

Improve Surveillance Regimens
- Tg in the face of Anti-Tg-Antibodies
Summary
Well Differentiated Thyroid Cancer

- Relatively uncommon cancer
- Excellent prognosis
- Treatment: Surgery +/- Radioactive Iodine
- Life Long Thyroxine ** TSH Suppression **
- Blood Tests:
 1. FreeT4: upper limits of normal
 2. TSH: generally < 1.0
 3. Tg: excellent tumour marker
 4. Anti-Tg-antibodies: surrogate marker, interferes with Tg