Breast Imaging Conundrums:

Case based approach to breast cancer detection Peggy P Yen MD, FRCPC, Breast Imaging Fellow

Disclosures

I have no financial interests or potential conflicts of interest.

Acknowledgements

Christine Wilson, BC Cancer Agency • Dr Paula Gordon, BC Women's Hos

Dutline

Part I: To elucidate the diagnostic imaging pathway for:

The routine screen detected abnormalities

The clinically detected abnormalities

The imaging occult abnormalities

art II:

Introduction to male breast diseases

Imaging recommendations

3C Screen vs Clinically detected abnormalities

creening: Asymptomatic

Biannual screening offered to asymptomatic women \geq 40 yo

Annual screening offered to women with higher risk: 1st degree amily history, genetic mutation carrier, prior chest radiation

Clinically detected: Symptomatic

Palpable abnormality, nipple discharge, nipple changes

Pain is not a typical indication

Screening Mammography Program

Program Overview	
Target Population	Women age 50-69 years Service also available to women age 40-49 & 70-74 and older
Screening Test	Two-view screening mammograms

Abnormal recall rate	2012	National target
Initial screen	17.3%	<10%
Subsequent screens	6.3%	<5%
Overall	6.9%	

Source: Screening Mammography Program 2015 Annual report

Screening Program Flow

Screening Mammogram: Case 1 54 F L CC L MLO

Screening Mammogram: Case 1 54 F L CC L MLO

Screen Detected: Abnormal or

Screen Detected: Additional Views

Screen Detected: Abnormal or

Screen Detected: BIRADS 4 Image guided Biopsy

creen Detected: Biopsy showed IDC. Fine wire localization and exci

High Risk Screening Program Flow

High Risk MRI Screen: Case 2

49 F BRCA1

Series: Collection MIP - SUB *PEAK* - Index: 10

4-8-15

Collection MIP - SUB *PEAK*

10 / 45

133.8mm

584x458

FOV: 53.3x41.8 cm

584x458 323.4Thk

Zoom 88% W 554 L 277

High Risk Patient Program Flow

High Risk Screen: Additional views

High Risk Screen: Additional views

High Risk Patient Program Flow

igh Risk Screen: Image guided biopsy showed ID0

Pathway for clinically detected Abnormality

The most common presenting clinical finding is of a palpable abnormality, discharge, new nipple inversion, nipple changes The initial diagnostic pathway is always physical examination

Mass	Nipple discharge	Nipple changes
	Physical examination	on
Diagnostic work up	 Spontaneous, Single duct, Bloody or clear Diagnostic work up Cytology galactogram 	 If no mass, SMP if not up to date Suspicious: diagnostic work up + surgical consult

Clinically detected Abnormality

Mammography and ultrasound are often used concurrently for palpable breast masses

A negative diagnostic exam (BIRADS 1 or 2) has an estimated cancer rate and a negative predictive value of 0.3 % and 99.7% respectively ³

Dennis et al suggests that breast biopsy may be avoided in women with palpable abnormalities when both the ultrasound and mammography depict normal tissue at the lump site 4

Clinical followup is recommended following a negative imaging exam since an MRI or palpation guided biopsy is reserved for those with persistent high clinical suspicion

Clinically detected Abnormality: Case 3

31 F with enlarging mass and pinching sensation to chest wall

Palpable mass: Diagnostic Targeted US

Galactography: Case 4

ma is the most common cause dy discharge

discovered, surgical excision is mended to:

% upgrade to carcinoma

% upgrade to a high risk lesion DIN1B

maging and clinically occult breast cancers

15-30% of breast cancers are not detectable by standard screening mammography 7 . This has been shown to be higher in <50 years and in those with dense breast (BIRADS C or D)

The primary limitation of full field digital mammography is overlapping dense fibroglandular tissue 9-10

Dense breast is an independent risk factor for breast cancer

This can be overcome in part by the advent of digital breast tomosynthesis when used in a screening setting 8 in combination with US

naging and clinically occult breast cancer

by of 27,825 asymptomatic women (1995 – 2000) with combined screening mammography, ultras hysical exam 10 found breast density was the most significant predictor of mammographic sensitiving hormonal status. ** 15% of cancers detected only with US

Sensitivity of screening modalities for cancer detection in women of varying densities

Modality				
Mammography	98.0	82.0	64.4	47.8
JS	NP	65.9	81.4	76.1
hysical exam*	22.0	31.7	28.8	34.78

^{*} Breast density can not be determined by physical examination

maging and clinically occult breast cancers

Mammography alone detects 4–5 cancers/1,000 women screened each year 14

Addition of screening ultrasound in women with mammographically normal but dense breasts improves breast cancer detection by finding an additional 2.3 cancers per 1,000 women screened and 3.8 cancers/high-risk lesions per 1,000 women screened¹⁵

To date, unlike some US States, there is no existing legislation in Canada to inform women of their breast density or to provide coverage of supplemental screening US to women with dense breast

Mammographically occult: Case 4

35 F

Mammographically occult: Case 4

Male breast disease

Male breast cancer comprises 1% of all male cancers and 0.6% of all breast cancers¹

Category	Males	Females
New Cases	200	23,800
Incidence (per 100,000)	1	99
Deaths	60	5,000
Death rate (per 100,000)	0.3	19
5 yr survival (2006-8)	80%	88%

o Foundation for Medical Education and Research

2015 Screening BC⁴

Normal Male Breast

Breast tissue of both sexes are identical at birth and remains quiescent until hormonal stimulation at puberty

- .Estrogen: Temporary proliferation of ducts and stroma
- .Testosterone: Involution of ducts
- .No Progesterone: No development of terminal lobular units (unless exposed to increased level of estrogen.

Normal Male Breast

ontains ductal and connective tissue. No suspensory ligaments of Cooper

ctoralis

Female: organized ducts and lobu

et al. 2015

Male Breast Imaging

Male breast disease is too few to justify screening mammography

When mammography yields suspicious findings not characteristic of gynecomastia, sonography is effective

The small breast size facilitates optimal ultrasound penetration allowing assessment of deep regions

Nova Scotia experience

Review of 1466 male patient encounters over a 13 year period

Gynecomatia is very common and can often be difficult to differentiate from malignancy by imaging particularly on ultrasound which does not add to diagnostic accuracy and car decrease specificity ¹¹

Found that false positives were more likely to occur when US was also used compared to mammography alone (23.7%, 83/350 vs 7.3%, 60/818)

A final diagnosis of gynecomastia very commonly resulted in a false positive imaging tes (22 out of 45 pathology proven cases of gynecomastia receiving a BI-RADS of 3 or higher

	PPV	NPV	+LR	Sens	Spec	Accurac
Mx	10.4 %	100 %	13.5	100 %	92.6 %	60.6 %
US +/ Mx	2.4 %	100 %	4.2	100 %	76.1 %	58.6 %

Male Breast disease: Gynecomastia

The abnormal increase in the stromal and ductal component of the male breast which is in response to increased estrogen: testosterone ratio

Most common male breast pathology. Found in up to 55% of male breasts in one autopsy series ⁶

Pathologically, gynecomastia progresses through several stages

There are many recognized causes with non-hormonal causes frequently associated witl unilateral gynecomastia

Cirrhosis: 8%	Idiopathic: 25%
Drugs: 10-20 %	Puberty: 25%

Gynecomastia

Yen et a

Past studies have suggested an increased incidence of male breast malignancy from 0.85 to 1.3 per 100,000 between 1973 and 2000 ²

Mean age: 67 (only less than 6% of cancer in < 40 yo)

Current principles of management are based on female breast cancer trials

Reported to present at a more advanced stage even though cancer behavior and aggressivity are considered equivalent to that of postmenopausal female breast cancer

Reported risk Factors:

Genetic	Lifestyle	Work	Disease
BRCA2	Obesity	High ambient temp	Testicular damage
Klinefelter	Alcohol	Exhaust emission	Liver damage
	Estrogen		Chest radiotherapy

** Gynecomastia is NOT a risk factor

Male Breast Cancer: Subtypes

Il of the histological subtypes identified in the female breast have been observed in the male breast

Histology	Proportion
Invasive Ductal	90%
Ductal carcinoma in situ	10
Invasive papillary	2
Medullary	2
Mucinous	1
Paget's	1
Lobular	1

Lancet 2006 ⁵

vasive ductal carcinoma. 72-year-old male with a three month history of new right ople retraction and tender retroareolar firmness

R Mag CC

Paget's disease. 80-year-old male with a firm mobile lump under the lef-

year old male presents with swelling around the L nipple for 2 weeks. Reported as BI-RAD I stereotactic biopsy was performed Pathology showed unilateral gynecomastia, florid ty

Summary

Review of the flow of diagnostic imaging in the identification of female breast cancer Review of the flow of diagnostic imaging in the setting of a clinical finding Review of the limitations of mammography in the detection of breast lesions Review of the male breast disease and the role of diagnostic imaging

References

Veiss, J, Moysich, K, Swede, H. Epidemiology of male breast cancer. Cancer epidemiology, biomarkers & prevention: a lication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 5; 14(1):20–26.

dibelli Z, Oztekin, O, Postaci, H, Uslu, A. The diagnostic accuracy of mammography and ultrasound in the evaluation of breast disease: A new algorithm. Breast Care. 2009; 4:255-259.

nan CH, Coopey SB, Freer PE et al. False-negative rate of combined mammography and ultrasound for women with able breast masses. Breast Cancer Res Treat. 2015; 153:699-702.

enis MA, Parker SH, Klaus AJ et al. Breast biopsy avoidance: The value of normal mammograms and normal sonograms in setting of a palpable lump. Radiology. 2001; 219:186-191.

entiman I, Fourquet A, Hortobogyi G, Male Breast Cancer. Lancet. 2006; 367:595-604.

phnson RE, Murad MH. Gynecomatia: pathophysiology, evaluation, and management. Mayo clin Pro. 2009; 84:1010-5.

uncan KA, Needham G, Gilbert FJ, et al. Incident round cancers: what lessons can we learn? Clin Radiol. 1998; 53:29-32.

ilbert F, Tucker L, Young K. Digital breast tomosynthesis (DBT): a review of the evidence for use as a screening tool. 2016; .41-150

References

- Al Mousa D, Ryan E, Mello-Thoms C, et al. What effect does mammographic breast density have on lesion detection in gital mammography? Clin Radiol. 2014; 69:333-41.
- D. Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and reast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 2002 Oct; 25(1):165-75.
- Greenlaw K, Iles SE, Butt, Yen P et al. Male breast disease: a review of radiologic assessment and accuracy and pathologi ariables over the past thirteen years. 2016. European Conference of Radiology presentation abstract.
- 2. Yen PPW, Sinha N, Barnes PJ et al. Benign and malignant male breast diseases: Radiologic and pathologic correlation. anadian Ass Rad J. 2015; 66: 198-207.
- 3. Slawson SH, Johnson AJ. Ductography: How to and what if? Radiographics. 2001; 21:133-150.
- 4. Breast cancer screening modalities. National Cancer Institute, 2012. Available at: ttp://www.cancer.gov/cancertopics/pda/screening/breast/healthprofessional (accessed August 6, 2011).
- 5. Weigert J and Steenbergen S. The Connecticut experiments second year: Ultrasound in the screening of women with ense breasts. 2015; 21:175-180