The following “Consensus Document on Bowel Preparation for Colonoscopy” is the culmination of an exceptional cooperative effort by 3 leading gastrointestinal societies. For over a year, a tripartite task force with representation from the American Society for Gastrointestinal Endoscopy, the American Society of Colon and Rectal Surgeons, and the Society of American Gastrointestinal and Endoscopic Surgeons has worked diligently to prepare this state of the art review. The comprehensive document is evidence based and a valuable resource for all physicians who perform colonoscopy. In addition to a critical scientific review of existent data, the document provides practical information on the manufacturers and pricing of available products used in bowel preparation. The governing bodies of all 3 organizations have reviewed and approved this document, which is to be published contemporaneously by the respective journals of each society. All who worked on this project should be congratulated for this practical contribution that will enhance the quality patient care that the members of all 3 societies provide on a daily basis.

Robert H. Hawes
President
American Society for Gastrointestinal Endoscopy (ASGE)

Ann Lowry
President
American Society of Colon and Rectal Surgeons

Dan Deziel
President
Society of American Gastrointestinal and Endoscopic Surgeons

A consensus document on bowel preparation before colonoscopy: Prepared by a Task Force From The American Society of Colon and Rectal Surgeons (ASCRS), the American Society for Gastrointestinal Endoscopy (ASGE), and the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES)

Colonoscopy is the current standard method for evaluation of the colon. Diagnostic accuracy and therapeutic safety of colonoscopy depends on the quality of the colonic cleansing or preparation. The ideal preparation for colonoscopy would reliably empty the colon of all fecal material in a rapid fashion with no gross or histologic alteration of the colonic mucosa. The preparation also would not cause any patient discomfort or shifts in fluids or electrolytes and would be inexpensive. Unfortunately, none of the preparations currently available meet all of these requirements.1,2

A brief history of the evolution of bowel preparation for colonoscopy will be discussed followed by an evidence-based analysis of the various colonoscopy preparations, dosing regimens, and adjuncts currently used.

EVOluTiO N O F BOwEL PrEPA RAtIO NS

Colonoscopy preparations evolved from radiologic and surgical preparations.3 Early preparations used dietary
limitations, cathartics, and enemas. Although these preparations cleansed the colon, they were time consuming (48-72 hours), uncomfortable for the patient, and associated with fluid and electrolyte disturbances. A rapid preparation used high-volume (7-12 liters) per oral gut lavage with saline/electrolyte solution. This also was associated with severe fluid and electrolyte shifts and poor patient tolerance. In 1980, Davis et al formulated polyethylene glycol (PEG), an osmotically balanced electrolyte lavage solution. The standard 4-liter dosing regimen given the day before the procedure was established as safe and effective. PEG quickly became the “gold standard” for colonoscopy. However, poor compliance related to the salty taste, the smell from the sulfates, and the large volume of fluids required led to modifications of the PEG solutions and their dosing recommendations and re-evaluations of other osmotic laxatives (eg, sodium phosphate [NaP]).

In 1980, Davis et al formulated polyethylene glycol (PEG), an osmotically balanced electrolyte lavage solution. The standard 4-liter dosing regimen given the day before the procedure was established as safe and effective. PEG quickly became the “gold standard” for colonoscopy. However, poor compliance related to the salty taste, the smell from the sulfates, and the large volume of fluids required led to modifications of the PEG solutions and their dosing recommendations and re-evaluations of other osmotic laxatives (eg, sodium phosphate [NaP]).

Davis et al.17 developed a method of pulsed rectal irrigation combined with magnesium citrate. These regimens and their use continue to evolve. More recent studies have focused on identifying the “ideal” preparation (Table 1), including parameters such as taste, electrolyte supplementation, and the timing and division of doses.

With this historical background and the precedent of an American Society for Gastrointestinal Endoscopy (ASGE) technology committee report, this document reviews the available evidence to create guidelines for bowel preparation before colonoscopy. The various studies in the literature have been graded according to the Levels of Evidence Grade Recommendation scale proposed by Cook et al (Table 2).

REGIMENS FOR COLONIC CLEANSING BEFORE COLONOSCOPY

Diet

Dosing. Dietary regimens characteristically incorporate clear liquids and low-residue foods during one to four days. Regimens typically incorporate dietary changes, and oral cathartic and/or additional cathartic enemas. A cathartic, such as magnesium citrate or senna extract, is used on the day before the procedure. Tap water enemas are administered on the morning of and occasionally on the evening before the procedure.

Evidence. Much of the evidence supporting these regimens comes from studies of colon cleansing for radiography. Although the individual components of these preparations vary widely, the combination of dietary restrictions and cathartics has proven to be safe and effective for colonic cleansing for colonoscopy. In a recent study of in-patients undergoing colonoscopy, a clear liquid diet before administration of the bowel preparation was the only diet modification that improved the quality of preparation. Although prolonged dietary restrictions and cathartics are effective, these regimens are less than ideal because of the time commitment required.

Recommendations. Dietary modifications alone, such as a clear liquid diet are inadequate for colonoscopy. However they have proven to be a beneficial adjunct to other mechanical cleansing methods (Grade IIB).

Enemas

Dosing. Tap water or NaP enemas are administered on the evening before or the morning of the procedure. For colonic cleansing, they are usually administered in conjunction with dietary restrictions or cathartics. In patients with poor or incomplete cleansing, one or two NaP enemas are useful in washing out the distal colon. Enemas are useful in washing out the distal segment of bowel in patients with a proximal stoma or a defunctionalized distal colon (eg, Hartmann’s). Various commercial enema preparations are discussed in the adjunct section.

Evidence. The evidence is mostly anecdotal with no recent prospective trials (Grade IIB).

Recommendations. Use enemas in patients who present to endoscopy with a poor distal colon preparation and in patients with a defunctionalized distal colon.

High-volume gut lavage

Dosing. Per oral gut lavage with high volumes (7-12 liters) of saline solution or balanced electrolyte solutions with or without a nasogastric tube have been used for colonic preparation. Mannitol was used in early formulations but abandoned secondary to bacterial fermentation into hydrogen and methane gas, which can cause explosion when electrocautery is used.

Evidence. Although these regimens are effective in cleansing the colon, they are poorly tolerated. Administration of high-volume unbalanced solutions can result in dramatic fluid and electrolyte shifts. There also have been anecdotal reports of complications after high-volume infusion through a nasogastric tube. Recommendations. Neither high-volume nor unbalanced solutions, such as mannitol, should be used for colonic preparation (Grade IA). In addition, caution should be taken when using nasogastric tubes for the administration of any bowel preparation infusion (Grade VD).

Rectal pulsed irrigation

Per rectal pulsed irrigation in combination with per oral ingestion of 10 oz of magnesium citrate the night before the colonoscopy is another potential preparation. The patient is given a 30-minute infusion of short pulses of warm tap water via the rectum through a rectal tube immediately before the colonoscopy. Disadvantages to this regimen are that it is time consuming and requires skilled nursing to administer, making it expensive to use.

Evidence. Chang et al developed this regimen and compared it with PEG. No significant differences in quality...
TABLE 1. Randomized, Controlled trials

<table>
<thead>
<tr>
<th>Study (y) (reference)</th>
<th>No. of patients</th>
<th>Study groups</th>
<th>Main outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohen et al (1994) (13)</td>
<td>422</td>
<td>4l PEG vs 4l PEG (sulfate-free) vs 90 ml NaP</td>
<td>NaP better prep, better tolerated</td>
</tr>
<tr>
<td>Church (1998) (24)</td>
<td>317</td>
<td>4l PEG (night before) vs 4l PEG (day of procedure)</td>
<td>PEG day of procedure with better prep</td>
</tr>
<tr>
<td>Adams et al (1994) (26)</td>
<td>382</td>
<td>4l PEG vs 2l PEG + bisacodyl</td>
<td>PEG + bisacodyl better tolerated, prep equal</td>
</tr>
<tr>
<td>Henderson et al (1995) (27)</td>
<td>242</td>
<td>4l PEG vs 90 ml NaP</td>
<td>Prep similar, NaP better tolerated</td>
</tr>
<tr>
<td>Young et al (2000) (28)</td>
<td>323</td>
<td>2l PEG + bisacodyl vs 90 ml NaP</td>
<td>NaP better prep, better tolerated</td>
</tr>
<tr>
<td>Poon et al (2003) (19)</td>
<td>200</td>
<td>2l PEG vs 90 ml NaP</td>
<td>Prep + tolerance similar</td>
</tr>
<tr>
<td>Golub et al (1995) (32)</td>
<td>329</td>
<td>4l PEG vs 4l PEG + metoclopramide vs 90 ml NaP</td>
<td>Preps equal, NaP better tolerated</td>
</tr>
<tr>
<td>Balaban et al (2003) (33)</td>
<td>101</td>
<td>90 ml NaP (liquid) vs 40 tabs NaP (tablet)</td>
<td>Liquid NaP better prep, better tolerated</td>
</tr>
<tr>
<td>Aronchick et al (2000) (34)</td>
<td>305</td>
<td>4l PEG vs 90 ml NaP vs 24–32 tabs NaP</td>
<td>Preps equal, NaP tabs better tolerated</td>
</tr>
<tr>
<td>Kastenberg et al (2001) (21)</td>
<td>845</td>
<td>4l PEG vs 40 tabs NaP</td>
<td>Prep equal, NaP tabs better tolerated</td>
</tr>
</tbody>
</table>
of colonic cleansing were demonstrated between these two methods.

Recommendations. Rectal pulsed irrigation administered immediately before the procedure combined with magnesium citrate given the evening before the procedure is a reasonable alternative to full-volume (4-liters) PEG in those individuals who cannot tolerate oral administration of PEG (Grade IIB).

PEG (electrolyte lavage solution)

PEG is a nonabsorbable solution that should pass through the bowel without net absorption or secretion. Significant fluid and electrolyte shifts are therefore avoided. Large volumes (4 liters) are required to achieve a cathartic effect.

Products.

1. Colyte® (Flavors: Cherry, Citrus-Berry, Lemon-Lime, Orange, Pineapple)
2. GoLYTELY® (Flavor: Pineapple)

Dosing. No solid food for at least two hours before ingestion of the solution; 240 ml (8 oz) every ten minutes until rectal output is clear or 4 liters are consumed. Dosage for nasogastric administration is 20 to 30 ml per minute (1.2–1.8 l/hr).45

Evidence. PEG is more effective and better tolerated than the diet combined with cathartic regimens that were used before 1980.6-8,46,47 PEG also is safer and more effective than high-volume balanced electrolyte solutions.48 PEG is safer (less production of hydrogen gas), more effective, and better tolerated by patients than mannitol-based solutions.49 Although PEG is generally well tolerated, 5 percent to 15 percent of patients do not complete the preparation because of poor palatability and/or large volume.32,50 The additional use of enemas does not offer any improvement in the efficacy of PEG solutions, yet increases patient discomfort.51 The timing of PEG doses has proven to be important to the quality of the bowel preparation. PEG taken in divided doses (3 liters the evening before and 1 liter the morning of the procedure) was demonstrated to be as effective as and better tolerated than the standard 4-liter dose given one day before the procedure.52 The timing of the preparation in relation to the colonoscopy also is

<table>
<thead>
<tr>
<th>Study (y) (reference)</th>
<th>No. of patients</th>
<th>Study groups</th>
<th>Main outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afridi et al (1995) (20)</td>
<td>147</td>
<td>4l PEG vs 90 ml NaP + bisacodyl</td>
<td>Prep equal, NaP + bisacodyl better tolerated</td>
</tr>
<tr>
<td>Frommer (1997) (14)</td>
<td>486</td>
<td>3l PEG vs 90 ml NaP (day before) vs 90 ml NaP (day before, day of procedure)</td>
<td>NaP day of procedure best prep, NaP better tolerated than PEG</td>
</tr>
<tr>
<td>Ell et al (2003) (35)</td>
<td>185</td>
<td>4l PEG (standard) vs 4l PEG (sulfate-free) vs 90 ml NaP</td>
<td>Standard PEG best prep, tolerance similar</td>
</tr>
<tr>
<td>Martinek et al (2001) (36)</td>
<td>187</td>
<td>4l PEG vs 90 ml NaP (with/without cisapride)</td>
<td>PEG better prep, NaP better tolerated</td>
</tr>
<tr>
<td>Vanner et al (1990) (37)</td>
<td>102</td>
<td>4l PEG vs 90 ml NaP</td>
<td>NaP better prep, better tolerated</td>
</tr>
<tr>
<td>Marschall and Bartels (1993) (38)</td>
<td>143</td>
<td>4l PEG vs 90 ml NaP</td>
<td>Prep equal, NaP better tolerated</td>
</tr>
<tr>
<td>Kolts et al (1993) (39)</td>
<td>113</td>
<td>4l PEG vs 90 ml NaP vs 60 ml Castor Oil</td>
<td>NaP best prep, better tolerated than PEG</td>
</tr>
</tbody>
</table>

PEG, Polyethylene glycol; NaP, sodium phosphate; tabs, tablets; prep, preparation.
significant. In one study, consumption of the PEG solution less than 5 hours before the procedure resulted in better preparation than when given more than 19 hours before the procedure. Additional studies have continued to show that divided-dose regimens are superior to single-dose regimens. One recent study suggests that the method and/or timing of administration is more important in determining quality of the preparation than is dietary restriction. The addition of prokinetic agents to PEG administration does not significantly improve colonic cleansing or overall patient tolerance when used as an adjunct with full-volume (4 liters) PEG. PEG is relatively safe for patients with electrolyte imbalance and for patients who cannot tolerate a significant fluid load (renal failure, congestive heart failure, or advanced liver disease with ascites). In addition, PEG gut lavage solution when a PEG-based lavage solution is required (Grade IIB). Cleansing preparations for colonoscopies performed in the afternoon should instruct that at least part of the PEG solution be given the morning before the procedure (Grade IIB). Enemas, bisacodyl, and metaclopramide as adjuncts to the full volume of PEG have not been demonstrated to improve colonic cleansing or patient tolerance and are, therefore, unnecessary (Grade IIB).

Sulfate-free PEG (SF-PEG)

PEG-based lavage solution without sodium sulfate was developed by Fordtran et al in an attempt to improve the smell and taste of PEG solutions. The improved taste was the result of a decrease in potassium concentration, increase in chloride concentration, and complete absence of sodium sulfate. The elimination of sodium sulfate results in a lower luminal sodium concentration. Therefore, the mechanism of action is dependent on the osmotic effects of PEG.

Products.

1. NuLYTELY® (Flavors: Cherry, Lemon-lime, Orange, Pineapple)
2. TriLyte® (Flavors: Cherry, Citrus-Berry, Lemon-lime, Orange, Pineapple)

Dosing. No solid food for at least two hours before taking the solution; 240 ml (8 oz) every 10 minutes until rectal output is clear or 4 liters are consumed. Dosage for nasogastric administration is 20 to 30 ml per minute (1.2–1.8 liters per hour). Pediatric (older than aged 6 months) dose is 25 ml/kg per hour until rectal effluent is clear.

Evidence. SF-PEG is less salty, more palatable, and comparable to PEG in terms of effective colonic cleansing and overall patient tolerance.

Recommendations. SF-PEG is comparable to PEG in terms of safety, effectiveness, and tolerance. SF-PEG is better tasting, but still requires the consumption of 4 liters in its standard regimen. SF-PEG is an acceptable alternative lavage solution when a PEG-based lavage solution is required (Grade IIB).

Low-volume PEG/PEG-3350 and bisacodyl delayed-release tablets

Low-volume PEG solutions were developed in an attempt to improve patient tolerance. To reduce the amount of volume of lavage solution required and reduce volume-related symptoms, such as bloating and cramping, while maintaining efficacy, bisacodyl and magnesium citrate are administered.

Product.

1. Halflytely® (Flavor: Lemon-lime)

Dosing. Only clear liquids on the day of the preparation. Dosage is four bisacodyl delayed-release tablets
(5 mg) at noon. Wait for bowel movement or maximum of six hours; 240 ml (8 oz) every ten minutes until 2 liters are consumed.45

Evidence. Multiple studies have compared full-volume (4 liters) PEG with low-volume (2 liters) PEG combined with magnesium citrate or bisacodyl. These studies have demonstrated equal efficacy of colonic cleansing but with improved overall patient tolerance.26,62

Low-volume PEG without any dietary restrictions has been recently suggested to provide better quality colon cleansing than the whole-dose regimen with no significant impact on tolerability or adverse effects 53

Recommendations. Two-liter PEG regimens combined with bisacodyl (ie, HalfLytely®) or magnesium citrate are equally effective compared with standard 4-liter PEG regimens but appear to be better tolerated and therefore a more acceptable alternative to the 4 liter PEG regimens (Grade IA). However, the safety of the reduced dose PEG in patients who may not tolerate fluids is still unknown. Additional studies comparing 2-liter regimens with NaP would be beneficial.

Low-volume PEG-3350 and bisacodyl delayed-release tablets

An additional low-volume PEG-3350 without electrolytes administered with adjuncts, such as bisacodyl, also has been used.

Product.
1. Miralax®

Dosing. Clear liquids only the day of the preparation. Dosage is four bisacodyl delayed-release tablets (5 mg) at noon. Wait for bowel movement or maximum of six hours; 240 ml (8 oz) of clear liquid containing one capful of Miralax® every ten minutes until 2 liters are consumed.

Evidence. Studies that have compared full-volume (4-liter) PEG with low-volume (2-liter) PEG-3350 combined with bisacodyl have clearly demonstrated an equal efficacy in terms of colonic cleansing and improved overall patient tolerance.

Recommendations. Two-liter PEG 3350 regimens combined with bisacodyl (ie, Miralax®) are equally effective compared with standard 4-liter PEG (Grade IA).

Aqueous NaP

Aqueous NaP is a low-volume hyperosmotic solution that contains 48 g (400 mmol) of monobasic NaP and 18 g (130 mmol) of dibasic NaP per 100 ml.63 The NaP osmotically draws plasma water into the bowel lumen to promote colonic cleansing. Significant fluid and electrolyte shifts can occur. NaP must be diluted before drinking to prevent emesis and must be accompanied by significant oral fluid to prevent dehydration. Patients with compromised renal function, dehydration, hypercalcemia, or hypertension with the use of angiotensin-converting enzyme (ACE) inhibitors, or angiotensin receptor blockers (ARBs) have experienced phosphate nephropathy after use of oral NaP solutions.64 The effects seem to be age-related and dose-related. Linden and Wave65 described the pharmacologic properties of NaP. The mean onset of bowel activity was 1.7 hours after the first dose and 0.7 hours after the second dose. The mean duration of action was 4.6 hours after the first dose and 2.9 hours after the second dose. Bowel activity ceased within four hours in 83 percent of patients and within five hours in 87 percent.

Product.
1. Fleet®

Dosing. Only clear liquids can be consumed on the day of preparation. Two doses of 30 to 45 ml (2-3 tbsp) of oral solution are given at least 10 to 12 hours apart. Each dose is taken with at least 8 oz of liquid followed by an additional minimum of at least 16 oz of liquid. The second dose must be taken at least three hours before the procedure.45

Evidence. NaP has been compared with full-volume (4-liter) PEG in multiple studies and has generally been found to be more or equally effective and better tolerated. Colonoscopists also were more likely to rate NaP as more acceptable than PEG-based solutions.15 A divided-dose NaP regimen in which the first dose is given the evening before the procedure and the second is given 10 to 12 hours later on the morning of the procedure has proven to be more effective than a regimen using two doses of NaP given the day before the procedure or a regimen using full-volume (4-liter) PEG.14 This finding is consistent with the pharmacologic properties of NaP discussed above. A second split-dose method for morning colonoscopies was demonstrated to be equally effective and as tolerable as standard 4-liter PEG.20 The split dose of NaP was given at 1600 and 1900 hours on the day before a morning colonoscopy. Bisacodyl was used as an adjunct in this regimen and given at 2200 hours the evening before the colonoscopy. In one study, NaP was demonstrated to be more effective in colonic cleansing than Picolax® (sodium picosulfate + magnesium citrate).66 However, a second study offered conflicting data.31 Because of its osmotic mechanism of action, NaP can result in potentially fatal fluid and electrolyte shifts, especially in elderly patients, patients with bowel obstruction, small intestine disorders, poor gut motility, renal or liver insufficiency, congestive heart failure, or liver failure.67 Nephrocalcinosis, as described previously, also is a concern, particularly in those patients who are being treated with ACE inhibitor or ARB.68 NaP can cause colonic mucosal lesions and ulcerations that may mimic inflammatory bowel disease.69 Although contraindicated in children younger than age five years, several studies have assessed NaP in the pediatric population and found the efficacy of NaP similar to PEG.58,69 The efficacy of NaP in the elderly is similar to younger adults and comparable to PEG.70,71 The addition of cisapride does not result in any improvement in colon cleansing or patient tolerance.72 Agents that counteract the fluid and electrolyte shifts of NaP have proven to be
successful, at least to a limited degree. In one study, the addition of a carbohydrate electrolyte rehydration solution resulted in less intravascular volume contraction.72 In another study, E-Lyte® solution was shown to enhance both patient tolerance and the overall efficacy of NaP.73 The addition of any carbohydrates to a bowel preparation may increase the production of explosive gases. Compared with the 40-tablet NaP regimen, aqueous NaP is better tolerated and more effective.32 Further studies comparing the newer 28 and 32 tablet regimens with aqueous NaP are pending publication.

Recommendations. Aqueous NaP colonic preparation is an equal alternative to PEG solutions except for pediatric and elderly patients, patients with bowel obstruction, and other structural intestinal disorders, gut dysmotility, renal failure, congestive heart failure, or liver failure (Grade IA). Dosing of aqueous NaP should be 45 ml in divided doses, 10 to 12 hours apart with one of the doses taken on the morning of the procedure (Grade IIB). Aqueous NaP is the preferable form of NaP at this time (Grade IIB). Apart from anecdotal reports, the addition of adjuncts to the standard NaP regimen has not demonstrated any dramatic effect on colonic cleansing preparation. Carbohydrate-electrolyte solutions such as E-Lyte® may improve safety and tolerability.

Tablet NaP

The tablet form of NaP was designed to improve the taste and limit the volume of liquid required. The results of two large, identically designed, Phase III, multicenter, randomized, investigator-blinded trials that compared tablet NaP with 4-liter PEG regimens21 were the basis for FDA approval in 2000. Each 2 g tablet contains 1500 mg of active ingredients (monobasic and dibasic NaP) and 460 mg of microcrystalline cellulose as a tablet binder. The amount of active ingredient in this regimen is comparable to the standard aqueous NaP regimen. Microcrystalline cellulose is a nonabsorbable inert polymer and is therefore insoluble in the gastrointestinal tract.23 The remnants of this polymer can be visualized during colonoscopy and may interfere with the examination of the bowel mucosa. Therefore, reduced amounts of microcrystalline cellulose may help visualize the colonic mucosa. In 2001, a laboratory study demonstrated the beneficial effects of ginger ale when administered with Visicol® tablets. This study attempted to provide a scientific basis for the clinical observation that ginger ale facilitates the removal of microcrystalline cellulose from the colon after the administration of Visicol® before colonoscopy.74

Product.

1. Visicol®

Dosing. Dosage is 32 to 40 tablets: 20 tablets on the evening before the procedure and 12 to 20 tablets the day of the procedure (3–5 hours before). The 20 tablets are taken as 4 tablets every 15 minutes with 8 oz of clear liquid.45 Bisacodyl is prescribed by some physicians as an adjunct.

Evidence. The Phase III trials in which tablet NaP regimens were compared with 4-liter PEG regimens demonstrated equal colon cleansing with fewer side effects.21,23 Tablet NaP has been compared with aqueous NaP in multiple studies. Balaban et al33 found that liquid or aqueous NaP is better tolerated and more effective than tablet NaP. Aronchick et al34 found that tablet NaP is as safe and effective as Colyte® and aqueous NaP and greatly preferred by patients. Two problems were identified with the initial 40-tablet regimen. First, the inactive ingredient microcrystalline cellulose produces a residue that obscures the mucosal surface. Second, a large number of tablets (n = 40) needs to be ingested in a short period of time. These problems have been overcome by the reduction in the amount of microcrystalline cellulose per tablet 22 by a reduction in the number of tablets needed to complete the preparation from 40 to between 28 and 32 tablets.23 Studies comparing liquid NaP and a 2-liter PEG regimen with NaP tablets are pending publication; studies on adjunct therapies are currently lacking.

Recommendations. The improved taste and palatability of tablet NaP compared with aqueous NaP has not translated into improved overall patient tolerance (Grade IA). The reduced amount of microcrystalline cellulose allows for better visualization of the colonic mucosa with less need for colonic irrigation (Grade IVB). Efficacy is maintained despite decreasing the number of tablets required to complete the preparation (Grade IIB), significantly improving patient tolerance.

ADJUNCTS TO COLONIC CLEANSING BEFORE COLONOSCOPY

Flavoring

There have been many attempts to improve the flavor of both PEG-electrolyte solutions and NaP solutions. As a result, PEG-electrolyte solutions are available in multiple flavors, such as cherry, citrus-berry, lemon-lime, orange, and pineapple. In addition, the sulfate salts have been removed from HalfLyte® and NuLYTELY®, resulting in a less salty taste and avoidance of the “rotten egg” smell. Gatorade\textsuperscript{®, CrystalLite®}, and carbohydrate-electrolyte solutions have been used to improve palatability in both PEG and NaP solutions. Ginger ale and water are used with NaP to improve the taste. However, improved flavor does not necessarily equate to improved tolerance.75 Special care must be taken to avoid altering the osmolarity of the preparation or adding substrates to the preparation, which can metabolize into explosive gases45,73 or alter the amount of water and salts absorbed.

Nasogastric/orogastric tube administration of colonic preparations

Nasogastric tubes have been used to instill colonic preparations, primarily PEG solutions, in both children and adults. In addition to the potential complications...
related to placement of the nasogastric tube, case reports have demonstrated the potential for severe life-threatening complications, such as aspiration.38

Carbohydrate-electrolyte solutions

Products.

1. Gatorade®
2. E-Lyte®
3. Generic formulations of carbohydrate-electrolyte solutions also are available.

Carbohydrate-electrolyte solutions have been used in combination with both PEG and NaP solutions to make the preparation more palatable and, in the latter, to avoid the severe electrolyte/fluid shifts. Combining PEG-3350 laxative powder (Miralax®) and Gatorade® has been shown to improve the taste and tolerability of the preparation.76 E-Lyte® combined with NaP was demonstrated to improve overall tolerability and reduce the degree of volume contraction, hypokalemia, and the need for intravenous hydration.73 Although beneficial, the addition of these carbohydrate-based solutions is associated with a theoretical risk of cautery-induced explosion if these carbohydrates are metabolized by colonic bacteria into explosive gases.

Enemas

Products.

1. Tap Water
2. Soap Suds
3. Fleet®
4. Fleet® Bisacodyl
5. Fleet® Mineral Oil

Before the development of PEG, enemas were an essential component of colonic preparation. However, conclusive evidence has demonstrated that enemas do not improve the quality of bowel cleansing, yet significantly increase patient discomfort.54 Enemas may still play a role in the patient who presents for colonoscopy with a poor preparation.

Metoclopramide

Products.

1. Reglan®
2. Generic formulations also are available.

Metoclopramide is a dopamine antagonist gastroprokinetic that sensitizes tissues to the action of acetylcholine. This results in increased amplitude of gastric contraction, increased peristalsis of the duodenum and jejunum, and does not change colonic motility. Metoclopramide used as an adjunct with PEG has been shown to reduce nausea and bloating but not improve colonic cleansing.54 However, a second study did not reveal any advantage with regards to colonic cleansing or patient tolerance.55

Simethicone

Products.

1. Gas-X®
2. Mylicon®
3. Mylanta®
4. Generic formulations also are available.

Simethicone is an anti-flatulent, anti-gas agent that has been used as an adjunct to colonoscopy preparations. The use of simethicone as an adjunct to PEG-electrolyte solution to eliminate foam formation after colonoscopy preparation and improve visualization during colonoscopy has been studied.77 Simethicone reduced foaming and improved tolerability and improved efficacy (i.e., reduction in residual stool at time of colonoscopy). However, the mechanism of action of simethicone was unclear. A subsequent study also showed a reduction in bubble formation seen during colonoscopy and an improvement in overall tolerability.78

Bisacodyl

Bisacodyl is a poorly absorbed diphenylmethane that stimulates colonic peristalsis.35 Bisacodyl used as an adjunct with high-volume balanced solution shortened the duration of whole gut irrigation, although no significant difference in colon cleansing was identified.79 Bisacodyl, when used as an adjunct with PEG, has demonstrated no significant difference in the quality of the preparation or amount of residual colonic fluid during colonoscopy.56,80 Bisacodyl and magnesium citrate are used as adjuncts to PEG solutions and have allowed for less volume of PEG necessary for colon cleansing.18,26 Afridi et al20 studied bisacodyl as an adjunct with NaP given in split doses the evening before the procedure. This combined regimen was found to be equally effective and tolerable as standard 4-liter PEG. Anecdotally, bisacodyl has been used as an adjunct for aqueous and tablet NaP, although further studies are necessary.

Saline Laxatives

Products.

1. Magnesium citrate
2. Picolax® (sodium picosulfate/magnesium citrate)

Magnesium citrate is a hyperosmotic saline laxative that increases intraluminal volume resulting in increased intestinal motility. Magnesium also stimulates the release of cholecystokinin, which causes intraluminal accumulation of fluid and electrolytes and promotes small bowel and, possibly, colonic transit. Because magnesium is eliminated from the body solely by the kidney, magnesium citrate should be used with extreme caution in patients with renal insufficiency or renal failure. Two studies by Sharma et al18,62 used magnesium citrate as an adjunct to PEG. The addition of magnesium citrate allowed for less PEG solution (2 liters) to be used to achieve the same result. Thus, the 2-liter volume PEG regimen was significantly better tolerated by patients.

Saline laxatives that use sodium picosulfate and magnesium citrate as the active ingredients are available primarily in the United Kingdom. Bowel preparations with this regimen have been compared with both PEG81 and NaP.85 Picolax® was found to be equally effective as PEG in terms
of quality of preparation but more tolerable (less nauseating and easier to finish). Conflicting data concerning NaP compared with Picolax® have been published.31,65

Senna

Products.
1. X-Prep®
2. Senakot

Senna laxatives contain anthraquinone derivatives (glycosides and sennosides) that are activated by colonic bacteria. The activated derivatives then have a direct effect on intestinal mucosa, increasing the rate of colonic motility, enhancing colonic transit, and inhibiting water and electrolyte secretion.39 Senna has been used as an adjunct to PEG regimens in a manner similar to that of bisacodyl.92 No differences were found between senna and bisacodyl when used as an adjunct in combination with PEG.90 The adjunctive use of senna with PEG solutions has been demonstrated to improve the quality of bowel preparation82 and to reduce the amount of PEG required for effective bowel preparation.83

Efficacy

To assess the efficacy of bowel preparation, one must assess the relatively subjective appearance of the prepared colonic mucosa to a relatively objective parameter. Toward that end, several colonic cleansing systems have been proposed11,54,83, however, no single system seems ideal in all situations.

Safety

The safety of the various bowel preparation protocols currently available for use before colonoscopy is related to the safety profile of the base agent, PEG or NaP. Generally, all of the preparations detailed in this document have been demonstrated safe for use in otherwise healthy individuals without significant comorbid conditions.21,85,86 Caution should be taken in selecting a bowel preparation for patients with significant hepatic, renal, or cardiac dysfunction, and for those at the extremes of age.

The administration of isotonic PEG solution does not result in significant physiologic changes as measured by patient weight, vital signs, serum electrolytes, blood chemistries, and complete blood counts.7,56,60 Isotonic PEG has been safely used in patients with serum electrolyte imbalances, advanced hepatic dysfunction, acute and chronic renal failure, and congestive heart failure. PEG does not alter the histologic features of colonic mucosa and may be used in patients suspected of having inflammatory bowel disease without obscuring the diagnostic capabilities of colonoscopy or biopsy analysis.87

Rare adverse events in patients receiving PEG have been reported and include nausea with and without vomiting, abdominal pain, pulmonary aspiration, Mallory-Weiss tear, PEG-induced pancreatitis and colitis, lavage-induced pill malabsorption, cardiac dysrythmia, and the syndrome of inappropriate antidiuretic hormone.2,88-90 An increase in plasma volume has been shown to occur in some individuals with concomitant disease states that predispose them to fluid retention.91,92 Adverse effects may occur less frequently in association with preparation regimens that use a reduced volume of PEG.93 Some drug interaction databases raise concerns when PEG solutions, especially HalfLytely®84, are prescribed for patients taking ACE inhibitors and/or potassium-sparing diuretics because of the small amount of potassium present in this preparation solution. Although this problem raises a theoretic concern for hyperkalemia in these patients, no clinical reports of adverse outcomes were available as of this writing.

The use of NaP is associated with physiologically significant, although rarely clinically meaningful, changes in volume status and electrolyte abnormalities. NaP is contraindicated in patients with serum electrolyte imbalances, advanced hepatic dysfunction, acute and chronic renal failure, recent myocardial infarction, unstable angina, congestive heart failure, ileus, malabsorption, and ascites.20,27,37,91,94,98 NaP preparations have been shown to alter both the macroscopic and microscopic features of intestinal mucosa, and induce aphthoid erosions similar to those seen in inflammatory bowel disease, which may obscure the diagnosis of inflammatory bowel disease.58,99,100 For this reason, many clinicians avoid using NaP preparations in patients undergoing diagnostic colonoscopy for suspected inflammatory bowel disease or microscopic colitis.

NaP is available as a bowel preparation for colonoscopy in both liquid and solid tablet form. The following adverse events are characteristic of both formulations. Serum electrolyte abnormalities and extracellular fluid volume is altered, initially by increasing fluid retention, and then causing significant losses of both fluid and electrolytes in the stool effluent.39,101 The significant volume contraction and resultant dehydration seen in some patients using NaP preparations may be lessened by encouraging patients to drink fluids liberally during the days leading up to their procedure, especially during their preparation.94 Although usually asymptomatic, hyperphosphatemia is seen in as many as 40 percent of healthy patients completing NaP preparations, and may be significant in patients with renal failure.58,102 As many as 20 percent of patients using NaP preparations develop hypokalemia; in addition, NaP has been shown to cause elevated blood urea nitrogen levels, decreased exercise capacity, increased plasma osmolality, hypocalcemia,101,103 and significant hyponatremia and seizures.104 These significant blood chemistry abnormalities are more profound in children; therefore, NaP should not be used in children with acute and chronic renal failure, congestive heart failure, ileus, and ascites. Rare adverse events, such as nephrocalcinosis with acute renal failure, also have been reported after NaP preparation for

Consensus document on bowel preparation before colonoscopy

902 GASTROINTESTINAL ENDOSCOPY Volume 63, No. 7 : 2006 www.giejournal.org
colonoscopy particularly in those patients with hypertension receiving ACE inhibitors or ARBs.64,105

SPECIAL CONSIDERATIONS

Inadequate bowel preparation

Inadequate bowel preparation for colonoscopy can result in missed lesions, cancelled procedures, increased procedural time, and a potential increase in complication rates. One study examined the possible causes for poor preparations.106 Surprisingly, less than 20 percent of patients with an inadequate colonic preparation reported a failure to adequately follow preparation instructions. Independent predictors of an inadequate colon preparation included a later colonoscopy starting time, failure to follow preparation instructions, inpatient status, procedural indication of constipation, use of tricyclic antidepressants, male gender, and a history of cirrhosis, stroke, or dementia. Anecdotally, a poor preparation after a PEG preparation is usually liquid and more easily managed than a preparation after NaP, which tends to be thick and tenaciously adhered to the mucosa. There is no published information on the management of the patient who has received a colonoscopy preparation that has been deemed inadequate. Regardless of the preparation selected, the patient and physician must be aware of potential financial obligations of a repeat colonoscopy and preparation. Specifically, the patient may be required to pay an additional co-pay for each examination and the financial intermediary may deem one or both examinations unnecessary. In these instances, the patient may be responsible for payment in full for both examinations. The following are recommendations (Grade VD) on management of this clinical predicament. Identify whether or not the patient has consumed the preparation as prescribed. If not, it would be reasonable to repeat the same preparation, although not within 24 hours using NaP because of the risk of toxicity. If the patient has properly consumed the preparation, reasonable options include repeating the preparation with a longer interval of dietary restriction to clear liquids, switching to an alternate but equally effective preparation (if the patient received PEG, change to NaP or vice versa), adding another cathartic, such as magnesium citrate, bisacodyl, or senna, to the previous regimen, or double administration of the preparation during a two-day period (with the exception of NaP). Combining preparations, for example PEG solution and NaP solution, also has been described with some success.18

Selection of bowel preparation based on comorbidities

Elderly patients. Elderly patients tend to have poorer preparations, although one study found no difference in the adequacy of the colonic preparation between PEG and NaP solutions.107 They are at an increased risk for phosphate intoxication because of decreased kidney function, concomitant medication use, and systemic and gastrointestinal diseases. Administration of NaP causes a significant rise in serum phosphate,108 even in patients with normal creatinine clearance.109 Hypokalemia is more prevalent in frail patients.110 However, NaP preparations may be safe in selected healthy elderly patients.71,72

Possible underlying inflammatory bowel disease. NaP preparations may cause mucosal abnormalities that mimic Crohn’s disease.68,100,111 However, the frequency of this problem is rare and may not mitigate against using NaP. This caveat is most important in the initial colonoscopic evaluation of patients with symptoms suspect for colitis.

Diabetes mellitus. One study showed that patients with diabetes have significantly poorer preparations with PEG solutions than patients without diabetes, although there is no evidence that NaP preparations are superior in this group.112

Pregnancy. The need for colonoscopy is uncommon during pregnancy, therefore, the safety and efficacy of colonoscopy in these individuals is not well studied. However, invasive procedures are justified when it is clear that by not doing so could expose the fetus and/or mother to harm. The safety of PEG electrolyte isotonic cathartic solutions has not been studied in pregnancy. PEG solutions are FDA Category C for use in pregnancy, as defined in the FDA Current Category for Drug Use in Pregnancy, wherein no adequate and well-controlled studies have been undertaken in pregnant females and a limited number of animal studies have shown an adverse effect. The common use of PEG solutions, such as Miralax®, to manage constipation associated with pregnancy supports its safety as a bowel preparation. NaP preparations, which are also FDA Category C, may cause fluid and electrolyte abnormalities and should be used with caution.35

Recommendations. If the potential benefit of colonoscopy outweighs the small but potential risks, patients may be cleansed with PEG solutions or, in select patients, a NaP preparation may be used (Grade VD).

Pediatric population. Although there are no “national standards” per se for pediatric bowel preparations for colonoscopy, review of the literature documents the three most commonly used preparations. The least commonly used preparation is the administration of two pediatric Fleet® enemas and X-Prep® (for age). A more widely used preparation includes Miralax® at 1.25 mg/kg per day for four days, the last day of which the child is maintained on clear liquids. This regimen is mild, well tolerated, and relatively simple to administer. The simplest preparation, both for the parents and the child, is the administration of a sugar-free, clear-liquid diet the day before and then nil by mouth for eight hours before the colonoscopy. This regimen is combined with Fleet® Phospho-soda® at a dosage of
TABLE 3. Cost of bowel preparation agents

<table>
<thead>
<tr>
<th>Product</th>
<th>Quantity</th>
<th>Average wholesale price *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colyte<sup>®</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flavored</td>
<td>3785 mL</td>
<td>$16.16</td>
</tr>
<tr>
<td>nonflavored</td>
<td>3785 mL</td>
<td>$13.89</td>
</tr>
<tr>
<td>GlycoLax<sup>™</sup></td>
<td>255 g</td>
<td>$19.54</td>
</tr>
<tr>
<td></td>
<td>527 g</td>
<td>$39.06</td>
</tr>
<tr>
<td>GoLYTELY<sup>®</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flavored</td>
<td>4000 mL</td>
<td>$19.70</td>
</tr>
<tr>
<td>nonflavored</td>
<td>4000 mL</td>
<td>$18.45</td>
</tr>
<tr>
<td>MiraLax<sup>™</sup></td>
<td>255 g</td>
<td>$21.73</td>
</tr>
<tr>
<td></td>
<td>527 g</td>
<td>$43.45</td>
</tr>
<tr>
<td>NuLYTELY<sup>®</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flavored</td>
<td>4000 mL</td>
<td>$25.65</td>
</tr>
<tr>
<td>nonflavored</td>
<td>4000 mL</td>
<td>$25.65</td>
</tr>
<tr>
<td>Trilyte<sup>®</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flavored</td>
<td>4000 mL</td>
<td>$25.63</td>
</tr>
<tr>
<td>Oral sodium phosphate</td>
<td>45 mL</td>
<td>$1.48</td>
</tr>
<tr>
<td>(aqueous)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fleet<sup>®</sup> Phospho-soda</td>
<td>90 ml</td>
<td>$2.65</td>
</tr>
<tr>
<td>Oral sodium phosphate</td>
<td>100s</td>
<td>$160.22 ($1.60/tablet, $44-$66/preparation)</td>
</tr>
<tr>
<td>(tablet) Visicol<sup>™</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bisacodyl (tablet) 5 mg</td>
<td>100s</td>
<td>$9.85 ($0.10/tablet)</td>
</tr>
<tr>
<td>(Amkas)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium citrate</td>
<td>300 mL</td>
<td>$1.43</td>
</tr>
<tr>
<td>(liquid) (AmerisourceBergen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senna (AmerisourceBergen)</td>
<td>100s</td>
<td>$8.99 ($0.09/tablet)</td>
</tr>
<tr>
<td>Senna/Docusate (tablet)</td>
<td>100s</td>
<td>$11.13 ($0.11/tablet)</td>
</tr>
<tr>
<td>Senna Plus<sup>®</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(American Health)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metoclopramide (tablet)</td>
<td>100s</td>
<td>$32.00 ($0.32/tablet)</td>
</tr>
<tr>
<td>5 mg (Pliva)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleet<sup>®</sup> Enema</td>
<td>135 mL</td>
<td>$0.80</td>
</tr>
<tr>
<td>Fleet<sup>®</sup> Bisacodyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECT, po 5 mg</td>
<td>25s</td>
<td>$2.90 (each)</td>
</tr>
<tr>
<td>SUP, RC, 10 mg</td>
<td>4s</td>
<td>$1.83 (each)</td>
</tr>
<tr>
<td>Fleet<sup>®</sup> Bisacodyl Enema 10 mg/1.25 oz</td>
<td>37.5 mL</td>
<td>$1.12</td>
</tr>
<tr>
<td>Fleet<sup>®</sup> Mineral Oil</td>
<td>480 mL</td>
<td>$1.88</td>
</tr>
<tr>
<td>Fleet<sup>®</sup> Mineral Oil Enemas</td>
<td>135 mL</td>
<td>$1.45</td>
</tr>
<tr>
<td>Enemeez<sup>®</sup> Mini Enema (replacement for Therevac<sup>®</sup>-SB)</td>
<td>5 mL (30s)</td>
<td>$72.99</td>
</tr>
<tr>
<td>Gas-X<sup>®</sup> (80 mg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12s</td>
<td>$1.88</td>
</tr>
<tr>
<td></td>
<td>36s</td>
<td>$4.67</td>
</tr>
<tr>
<td>Mylicon<sup>®</sup> Infant Drops</td>
<td>15 mL</td>
<td>$6.22</td>
</tr>
<tr>
<td>40 mg/0.6 ml</td>
<td>30 mL</td>
<td>$10.36</td>
</tr>
</tbody>
</table>
1.5 tablespoons for children weighing less than 15 kg and 3 tablespoons for children weighing 15 kg or more, the afternoon and then again the evening before the colonoscopy. Each of these preparations is safe and will adequately prepare the child’s colon for colonoscopy (Grade IA).113,114

COST

Table 3 shows the cost of bowel preparation agents listed as average wholesale price (AWP), which is provided by the “Red Book” July 2005. As can be seen, the least expensive solution is oral NaP and the most expensive is the tablet form of NaP. The various PEG preparations are intermediate in cost. None of the bowel preparation agents has an associated CPT code that would allow for separate payment reimbursed by the patients’ insurance company or Medicare in an outpatient setting. In an inpatient setting, the reimbursement for these agents would be included in the DRG payment. Of note, patients’ compliance and adequacy of bowel preparation agents can affect the direct cost for colonoscopic examination. A cost analysis has shown that inadequate bowel preparation could prolong the procedure time and increase the chance for an aborted examination and repeat colonoscopy earlier than suggested or required by current practice standards.115 In one study, inadequate bowel preparation led to a 12 percent increase in costs at a university hospital setting and a 22 percent increase at a public hospital setting.116 A meta-analysis performed on eight colonoscopist-blinded trials showed that the direct costs of colonoscopic examination (excluding the cost of bowel preparation agents) were $465 for NaP and $503 for PEG, assuming that the rates of re-examination secondary to incomplete bowel preparation for NaP and PEG were 3 and 8 percent, respectively. The results suggest that NaP is less costly than PEG with a more easily completed preparation.115

SUMMARY

Colonoscopy is the most commonly used technique for inspection of the colonic mucosa. The safety and effectiveness of colonoscopy in identifying important colonic pathology is directly impacted by the quality of the bowel preparation performed in anticipation of the procedure. Physicians favor preparations associated with the best patient compliance to achieve the best results. Patients favor preparations that are low in volume, palatable, have easy to complete regimens, and are reimbursed by health insurance or are inexpensive. Both patients and physicians favor preparations that are safe to administer in light of existing comorbid conditions and those that will not interact with previously prescribed medications. Aqueous NaP solutions, NaP tablets, and PEG solutions, especially low-volume solutions, are all accepted and well tolerated by the majority of patients undergoing bowel preparation for colonoscopy. Physicians are advised to select a preparation for each patient based on the safety profile of the agent, NaP or PEG, in light of the overall health of the patient, their comorbid conditions, and currently prescribed medications. In certain circumstances, such as bowel preparation in children, elderly patients, patients with renal insufficiency, and those with hypertension who are receiving ACE inhibitors or ARBs, it may be advisable to adhere to PEG-based solutions because of the risks of occult physiologic disturbances that may potentially contraindicate the use of NaP-based regimens. A variety of other preparations, none of which seems as popular because of inferior efficacy and/or patient acceptance, remain available for use in other circumstances in which bowel preparation is necessary.
Many adjuncts to bowel preparation have been proposed but remain largely inefficacious and therefore cannot be recommended for routine use.

ACKNOWLEDGEMENT

The authors and the governing bodies of the three respective societies thank Ms. Elektra McDermott for her assistance in all phases of data collection and manuscript preparation and Dr. Thomas Lobe for his expert contributions regarding bowel preparation in pediatric patients.

DISCLOSURE

Steven D. Wexner, MD, Scientific Advisory Panel to C.B. Fleet, David E. Beck, MD, Consultant, Braintree Salix, Todd H. Baron, MD, None, Robert D. Fanelli, MD, None, Neil Hyman, MD, None, Bo Shen, MD, Consultant to Salix, Visicol, Kevin E. Wasco, MD, None.

APPROVAL STATEMENT

This document was reviewed and approved by the SAGES Board of Governors, the ASCRS Standards Committee and Executive Council, and the ASGE Governing Board.

REFERENCES

Consensus document on bowel preparation before colonoscopy

94. Huynh T, Vanner S, Paterson W. Safety profile of 5-h oral sodium
91. Granberry MC, White LM, Gardner SF. Exacerbation of congestive
90. Schroppel B, Segerer S, Keuneke C, et al. Hyponatremic encephalop-
89. Franga DL, Harris JA. Polyethylene glycol-induced pancreatitis. Gas-
87. Pockros PJ, Foroozan P. Golytely lavage versus a standard colon-
86. Reddy DN, Rao GV, Sriram PV. Efficacy and safety of oral sodium
83. Iida Y, Miura S, Asada Y, et al. Bowel preparation for the total colon-
80. Ziegenhagen DJ, Zehnter E, Tacke W, et al. Senna versus bisacodyl in
79. Rings EH, Mulder CJ, Tytgat GN. The effect of bisacodyl on whole-gut
78. Shaver WA, Storms P, Peterson WL. Improvement of colonic lavage
77. Pashankar DS, Uc A, Bishop WP. Polyethylene glycol 3350 without
76. Matter SE, Rice PS, Campbell DR. Colonic lavage solutions: plain ver-
75. Pashankar DS, Uc A, Bishop WP. Polyethylene glycol 3350 without
74. Granberry MC, White LM, Gardner SF. Exacerbation of congestive
72. Lieberman DA, Ghormley J, Flora K. Effect of oral sodium phosphate
71. Wong NA, Penman ID, Campbell S, et al. Microscopic focal cryptitis
70. Ainley EJ, Winwood PJ, Begley JP. Measurement of serum electrolytes
69. Fass R, Do S, Hixson LJ. Fatal hyperphosphatemia following Fleet
68. Chilton AP, O'Sullivan M, Cox MA, et al. A blinded randomized com-
67. Trautwein AL, Vinitski LA, Peck SN. Bowel preparation before colonos-
66. Holub A, Muller S. Aspiration: a possible severe complication in col-
65. Gabel A, Muller S. Aspiration: a possible severe complication in colo-
64. DiPalma JA, Wolff BG, Meagher A, et al. Comparison of reduced vol-
63. Turnage RH, Guice KS, Gannon P, et al. The effect of polyethylene gly-
61. Grenberry MC, White LM, Gardner SF. Exacerbation of congestive
60. Schnopp B, Segerer S, Keuneke C, et al. Hyponatremic encephalop-
58. Huyhn T, Vanner S, Paterson W. Safety profile of 5-h oral sodium
56. Shaver WA, Storms P, Peterson WL. Improvement of colonic lavage
55. Matter SE, Rice PS, Campbell DR. Colonic lavage solutions: plain ver-
54. Pockros PJ, Foroozan P. Golytely lavage versus a standard colon-
52. Lieberman DA, Ghormley J, Flora K. Effect of oral sodium phosphate
50. Rings EH, Mulder CJ, Tytgat GN. The effect of bisacodyl on whole-gut
49. Pashankar DS, Uc A, Bishop WP. Polyethylene glycol 3350 without
47. Holub A, Muller S. Aspiration: a possible severe complication in colo-
45. Shaver WA, Storms P, Peterson WL. Improvement of colonic lavage
44. Granberry MC, White LM, Gardner SF. Exacerbation of congestive
43. Fass R, Do S, Hixson LJ. Fatal hyperphosphatemia following Fleet
42. Chilton AP, O'Sullivan M, Cox MA, et al. A blinded randomized com-
41. Holub A, Muller S. Aspiration: a possible severe complication in colo-
40. Gabel A, Muller S. Aspiration: a possible severe complication in colo-
39. Shaver WA, Storms P, Peterson WL. Improvement of colonic lavage
38. Granberry MC, White LM, Gardner SF. Exacerbation of congestive
This article appears simultaneously in the June 2006 issues of Diseases of the Colon and Rectum, Gastrointestinal Endoscopy, and Surgical Endoscopy.

Steven D. Wexner, MD
Task Force, Chair
David E. Beck, MD (ASCRS)
Todd H. Baron, MD (ASGE)
Robert D. Fanelli, MD (SAGES)
Neil Hyman, MD (ASCRS)
Bo Shen, MD (ASGE)
Kevin E. Wasco, MD (SAGES)

1Department of Colorectal Surgery, Cleveland Clinic Florida, Weston, Fla.
2Department of Colon and Rectal Surgery, Ochsner Clinic Foundation, New Orleans, La.
3Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minn.
4Surgical Specialists of Western New England, PC/Department Surgery, Berkshire Medical Center, Pittsfield, Mass.
5Department of Surgery, University of Vermont College of Medicine, Burlington, Vt.
6Department of Gastroenterology/Hepatology, Cleveland Clinic Foundation, Cleveland, Ohio.
7Surgical Associates of Neenah, S.C., Neenah, Wis.

Reprint requests: Steven D. Wexner, MD, Department of Colorectal Surgery, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, FL 33331. Email: mcderme@ccf.org

ADDENDUM

Products and Manufacturers

<table>
<thead>
<tr>
<th>Product</th>
<th>Manufacturer</th>
<th>City, State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colyte®</td>
<td>SchwarzPharm</td>
<td>Mequon, WI</td>
</tr>
<tr>
<td>GoLYTELY®</td>
<td>Braintree Laboratories</td>
<td>Braintree, MA</td>
</tr>
<tr>
<td>NuLYTELY®</td>
<td>Braintree Laboratories</td>
<td>Braintree, MA</td>
</tr>
<tr>
<td>TriLyte®</td>
<td>SchwarzPharm</td>
<td>Mequon, WI</td>
</tr>
<tr>
<td>HalfLytey®</td>
<td>Braintree Laboratories</td>
<td>Braintree, MA</td>
</tr>
<tr>
<td>Miralax®</td>
<td>Braintree Laboratories</td>
<td>Braintree, MA</td>
</tr>
<tr>
<td>Fleet® Phospho-soda</td>
<td>C.B. Fleet Company</td>
<td>Lynchburg, VA</td>
</tr>
<tr>
<td>Picolax®</td>
<td>Ferring Pharmaceuticals</td>
<td>Berkshire, UK</td>
</tr>
<tr>
<td>E-Lyte®</td>
<td>C.B. Fleet Company</td>
<td>Lynchburg, VA</td>
</tr>
<tr>
<td>Visicol®</td>
<td>Salix Pharmaceuticals</td>
<td>Morrisville, NC</td>
</tr>
<tr>
<td>Gatorade®</td>
<td>Gatorade International</td>
<td>Chicago, IL</td>
</tr>
<tr>
<td>CrystalLite®</td>
<td>Kraft Foods</td>
<td>Northfield, IL</td>
</tr>
<tr>
<td>Fleet® Bisacodyl</td>
<td>C.B. Fleet Company</td>
<td>Lynchburg, VA</td>
</tr>
<tr>
<td>Fleet® Mineral Oil</td>
<td>C.B. Fleet Company</td>
<td>Lynchburg, VA</td>
</tr>
<tr>
<td>Reglan®</td>
<td>Robins Pharmaceutical</td>
<td>Eatontown, NJ</td>
</tr>
<tr>
<td>Gas-X®</td>
<td>Novartis Consumer Health, Inc.</td>
<td>Broomfield, CO</td>
</tr>
<tr>
<td>Myliron®</td>
<td>J&J/Merck Pharmaceuticals</td>
<td>Fort Washington, PA</td>
</tr>
<tr>
<td>Mylanta®</td>
<td>J&J/Merck Pharmaceuticals</td>
<td>Fort Washington, PA</td>
</tr>
<tr>
<td>X-Prep®</td>
<td>Purdue Frederick</td>
<td>Norwalk, CT</td>
</tr>
</tbody>
</table>
Immediately following publication of “Wexner SD (Task Force Chair), Beck DE, Baron TH, Fanelli RD, Hyman N, Shen B, Wasco KE. A consensus document on bowel preparation before colonoscopy: prepared by a Task Force from the American Society of Colon and Rectal Surgeons (ASCRS), the American Society for Gastrointestinal Endoscopy (ASGE), and the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) (Gastrointest Endosc 2006;63:894-909),” the Food and Drug Administration (FDA) issued an alert regarding the use of oral sodium phosphate (OSP) products for bowel preparation. The three sponsoring societies (ASCRS, ASGE, and SAGES) wish to add the following FDA warning to the consensus document.

Ann Lowry, Immediate Past President, ASCRS
Robert Hawes, Immediate Past President, ASGE
Daniel Deziel, Immediate Past President, SAGES

“Acute phosphate nephropathy, a type of acute renal failure, is a rare, but serious event associated with the use of oral sodium phosphate (OSP) for bowel cleansing. Documented cases of acute phosphate nephropathy include 21 patients who used an OSP solution (such as Fleet Phospho-soda or Fleet ACCU-PREP) and one patient who used OSP tablets (Visicol). No cases of acute phosphate nephropathy or acute renal failure have been associated with OsmoPrep, an OSP tablet bowel preparation recently approved. Individuals at increased risk of acute phosphate nephropathy include: those of advanced age, those with kidney disease or decreased intravascular volume, and those using medicines that affect renal perfusion or function [diuretics, angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and possibly nonsteroidal anti-inflammatory drugs (NSAIDs)].