Liver masses: how to workup a liver mass and update on liver cancer

Alice C. Wei, MD, MSc, FRCSC, FACS

Princess Margaret Cancer Centre

HPB Surgical Oncology and General Surgery Associate Professor of Surgery, University of Toronto Lead, Quality and KT, Surgical Oncology, Cancer Care Ontario

VES HERE

CONFLICT OF INTEREST DECLARATION

I, Alice Wei declare that in the past 3 years:

I have been a member of an Advisory Board or equivalent with the following companies*: Ethicon, Histosonic, Celgene, Sanofi, Takeda, Bayer

I have been a member of the following speakers' bureau: None

I have done speaking engagements for the following companies*: Sanofi, Celgene

I have received payment or funding from the following companies*

(includes gifts, grants, honoraria, and 'in kind' compensation): None

I have done consulting work for the following companies*: Cancer Care Ontario

I have held a patent for a product referred to in the program or that is marketed by a commercial organization: None

I or my family hold individual shares in the following companies*: None

I have participated in a clinical trial for the following companies*: None

MANAGING POTENTIAL BIAS

no commercial uses will be discussed

*pharmaceutical, medical device, or communications companies

Learning Objectives

- 1. review approach for diagnosing liver masses
- 2. review management of benign lesions
- 3. review management of malignant tumors

<u>Question: Which of the following</u> <u>statements are true?</u>

- 1. Liver cysts should be resected if they grow rapidly?
- 2. Hepatic adenomas should only be resected if symptomatic
- 3. MRI should be used to assess all liver masses
- 4. Liver biopsy should be used to confirm diagnosis in all suspected liver cancers
- 5. Focal nodular hyperplasia can be confused with malignant liver tumours

Approach to liver lesions

- History & physical
 - Symptoms?
 - Pain weight loss/ fatigue/ jaundice
- Risk factors?
 - previous malignancy
 - risk factors for cirrhosis
 - EtoH, PSC etc
 - OCP, anabolic steroid use
- Routine blood tests \rightarrow LFT, Bili, Alb, INR
 - add tumour markers if clinical suspicion
- Imaging is very important
 - Diagnostic \rightarrow multimodality

Imaging modalities

- US \rightarrow CT \rightarrow MRI
- Special tests
 - contrast enhanced US
 - CT/PET
- Nuclear medicine scans
 - − RBC scans/sulfur colloid scans
 →obsolete
- Biopsy
 - For indeterminate lesions

What to look for on imaging reports

- Important features
 - lesion consistency \rightarrow was it there before
 - imaging characteristics \rightarrow enhancement pattern
 - number/location
 - evaluate non-tumour liver
- Get to know your radiologists
 - different sensitivity/ specificity thresholds
 - variety of area of interest/training
 - dictating styles differ
 - Modifiers used: suggestive, worrisome, cannot exclude...
- if dictation is not clear

Toronto General • Tor Gal Mst Tadiologist for clarification or advice Princess Margaret

<u>Ultrasound</u>

Useful for

- Screening exam
- assess for biliary obstruction
- surveillance of established lesions

Disadvantages

- Additional tests required for confirmation
- Quality is operator dependent
- Limited visualization in fatty livers

CT scan

- excellent size and anatomic resolution
- IV contrast required
 - Dye protocol depends on pathology
 - Dedicated liver protocol CT needed
- Contraindications:
 - impaired renal function
 - dye allergies
 - can be pre medicated
 - radiation exposure

MRI scan

- Use MRI as confirmatory test
 - for 'doubtful' cases
 - No required for surveillance of known lesion
- helpful for 'indeterminate' lesions
 - Primovist and/or gadolinium dye
- superior for fatty livers
- MRCP to assess biliary system

When to biopsy

- Biopsy selectively
- Indicated if tissue needed to guide Rx
 - to establish initial diagnosis of malignancy
 - Distinguish primary cancer site
 - Non-tumour liver if liver function an issue

Liver lesions

Liver metastases

Liver cysts

- >90% asymptomatic
- >50% multiple
- Vast majority are benign
- If symptoms
 - Intra-cystic bleeding/mass effect
 - Consider drainage
- If 1 growth or complexity consider MRI to characterize
- Polycystic liver disease
 - Assess for extra-hepatic disease

liver abscess

Complex liver cysts

- Often involuted simple cysts appear complex
- Infectious cysts
 - Hydatid cysts
 - Echinococcal cysts
 - Exposure to sheep/dogs
 - Fever and pain may be present
- Neoplastic cysts
 - biliary cystic neoplasms \rightarrow rare
 - Cystic metastases occasionally

neoplastic cyst

Solid benign lesion: Hemangioma

- most common liver neoplasm
- 20% population
- F:M 5:1
- always asymptomatic
- 20-30% multiple
- Typical features characteristics
 - sharply demarcated
 - peripheral nodular enhancement

Hemangioma: Work up and treatment

- Ultrasound
 - diagnostic if healthy patient and no risk factors
- CT liver contrast
 - often diagnostic
 - If classic features present
 → no F/U needed
- Beware of the atypical hemangioma
- MRI
 - accuracy 85-95%
 - confirmatory test for atypical lesions

Solid benign lesion: Focal Nodular Hyperplasia

- benign, hyperplastic lesion
 →hamartoma?
- 3% population
- female: male 6:1

Pre AP PVP

- central stellate scar
- tortuous feeding artery
- homogenous arterial enhancement

Focal Nodular Hyperplasia

- FNH can be confused
 - adenoma
 - fibrolamellar HCC
 - Typical HCC
- US and CT are NOT diagnostic
- FNH must be confirmed with MRI
- MRI accuracy 70-90%
- sometimes biopsy needed

Solid benign lesion: Hepatic adenoma

- benign hepatocyte tumour
 - uncommon 1/10^{6 -} 4/10⁵
 - 44% have symptoms
 - 30% multiple
 - Premalignant (β catenin mutation)
- associated with
 - OCP use / anabolic steroids
 - obesity
 - storage diseases (Glyogen Storage Types 1 And 3)
- ** potential for rupture and malignant transformation
- MRI to characterize
- biopsy usually required

Solid benign lesion: Hepatic adenoma

Treatment

- Stop exogenous hormones
- Refer for surgical resection

- If bleeding \rightarrow urgent embolization +/- surgery
- Expectant management an option for small adenomas¹
 - < 3 cm, no high risk features (beta-catenin mutated, inflammatory, undifferentiated subtype, hypervascular)</p>
 - Surveillance \rightarrow Imaging and AFP q6 mo X 2 yrs, then qyr
- Treatment for > 3cm
 - Ablation, RFA, resection

Solid malignant lesion: Metastases

- most common malignancy in liver
- often multiple
- appearance depends on primary
 - most hypoattenuated: adenocarcinoma
 - hypervascular: neuroendocrine, renal, melanoma, other
- workup depends on clinical setting
 - often biopsy NOT required for new lesions in recent cancer patient
- Treatment depends on primary cancer

Solid malignant lesion: Hepatocellular carcinoma

- Increasing incidence due to
 - Hep C, fatty liver disease (NASH)
 - Improved screening for cirrhosis
- majority have liver disease
- hyperplastic → dysplastic → malignant
- difficult to differentiate between dysplastic nodule and HCC
- Usual variants have atypical imaging
 - HCC-cholangicarcinoma variant
 - atypical imaging
 - Worse prognosis

Hepatocellular carcinoma

- Imaging characteristics
 - Signs of cirrhosis
 - Arterial enhancement with venous 'washout'
 - Often multifocal
- Typical imaging + AFP are definitive
 - Biopsy often NOT required
- Rx: depends on liver function and tumour stage
 - Surgery only for Childs A, no portal hypertension

Management of HCC: BCLC algorithm¹

Nature Reviews Clinical Oncology 11, 525–535 (2014) doi:10.1038/nrclinonc.2014.122 The Lancet, **379**, Forner, A., Llovet, J. M. &Bruix, J. Hepatocellular carcinoma, 1245–1255

24

Solid malignant lesion: cholangiocarcinoma

- usually singe hypoattenuated lesion
- Klatskin type if jaundice and biliary obstruction at bifurcation
- US/CT/MRI suggest adenoCA
- metastatic W/U usually required
 - CT chest, OGD/, colonoscopy, mammogram
- biopsy may be required
 IHC → CK-7 + positive, CK 20-

Cholangiocarcinoma treatment

- Treat jaundice +/- cholangitis if present
- Surgical resection if resectable
- Role of adjuvant chemo +/- XRT
 - No good evidence
 - Gem/Cis considered for Stage III
 - XRT if positive margins
- Liver transplantation (Mayo protocol)
 - < 3cm localized klatskin tumour</p>
 - Unresectable or liver disease

Radiologic features of common liver lesions

	US-US doppler, contrast ultrasound	Triphasic CT	MRI	PET SCAN	CT-angiography
Hemangioma	++	+++	++++		+++
(1-10 cm)	Hyperechoic	Peripheral puddles, fill in from	Peripheral enhancement	No uptake	Cotton wool pooling
	Doppler: low flow, low index,	periphery, enhancement on	centripetal progression		of contrast, normal
	absence of spectral broadening	delayed scan	Hyperintense on T2, hypo		vessels without AV
			intense on T1		shunt, persistent
			SS > 95%, SP 95%		enhancement
Focal fatty	+	++	+++		Normal finding
liver	Hyper echoic, no mass effect, no	Sharp interface		No uptake	
	vessel displacement	Low density (< 40 u)			
FNH (< 3 cm)	+	++	++++		+++
	Homogenous iso, hypo, or hyper	Homogeneous enhance strongly	Hyper vascular +Gd	No uptake	Hyper vascular 70%
	echoic, central hyper echoic area	with hepatic arterial phase	Isodense T1		centrifugal supply
	Central arterial signal	Isodense with liver; Central low	Hyper intense scar T2		
	Doppler: high flow, spectral	density scar	SS > 95%; SP > 95%		
	broadening				
Adenoma	+	++	++		++
(5-10 cm)	Heterogeneous	Homogenous > Heterogeneous,	Capsule, Hyper intense in	No uptake	Hyper vascular
	Hyper echoic	Peripheral feeders filling in	T1 (intra lesional fat)	uptake if	Large peripheral
	If haemorrhage: anechoic center	from periphery		degenera-tion	Vessel
	In doppler: variable flow, spectral			to HCC	Central scar if
	broadening				haemorrhage
HCC	+	+++	+++	+	++++
	Hypo or hyper echoic	Hyper vascular, often irregular	Hyper vascular	Increased	Hyper vascular
	Doppler: hyper vascular	borders	Poor different: Hypo intense	uptake, but	Av shunting
	Doppler: index and flow high,	Heterogeneous > Homogeneous	T-1, Hyper intense T2	many HCCs	Angiogenesis
	spectral broadening	abnormal internal vessel	Well different: Hyper	show no uptake	
		Hallmark is venous washout	intense T-1, Iso intense T-2	at PET	
		SS 52%-54%	SS 53%-78%		
Cholangio-	Bile duct dilatation if major ducts	Hypo dense lesion. Delayed	Hypo intense T1	Uptake ++	Hypervascular
carcinoma	are involved. Intra-hepatic CCC:	enhancement	Hyper intense T2		
	no bile dilatation		MRCP is useful	SS 93%	
Metastasis	+1	+++	+++	+++++	++++
	SS 40%-70% hypo to hyper	SS 49%-74 % complete ring	SS 68%-90 %	SS 90%-100%	SS 88%-95%
	echoic; doppler; low index	enhancement	Low intensity T-1		hyper vascular
	and flow; presence of spectral broadening		High intensity T-2		

Ioronto Rehab

COURAGE LIVES HERE

Assy N, World J Gastro, 2009

Treatment with liver surgery

- HPB sub-specialization
- Surgeons now better oncologists
 - collaboration with cancer centers
 - ① use of neo-adjuvant therapy

advanced technical toolbox

- high volume experience
- vascular resections now routine
- minimization of complication rates

re 4.2.3h: Age-adjusted mortality rates for liver cancer surgeries (2004-12)

pr-complex-cancer-surgical-cen

HPB surgery in Ontario

HPB Cancer Surgery Standards

Number of liver cancer surgeries by hospital corporation, fiscal years 2004/05 vs. 2014/15

Conclusions

- Liver masses are commonly identified
- Imaging usually distinguishes between benign/malignant
- Selective biopsy for indeterminant lesions or when tissue is required for Rx
- Liver resection should be performed at an experienced centre

Questions?

10EN-215 Division of General Surgery University Health Network 200 Elizabeth St | Toronto ON M5G 2C4 Tel: 416-340-4232 | Fax: 416-340-3808 Email: alice.wei@uhn.ca

