Neuroendocrine Tumors

THE A, B, C’s

Carcinoid tumours: origin

<table>
<thead>
<tr>
<th>Carcinoid site</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digestive system</td>
<td>64%</td>
</tr>
<tr>
<td>Other</td>
<td>28%</td>
</tr>
<tr>
<td>Colon and rectum</td>
<td>8%</td>
</tr>
</tbody>
</table>
| Other | 28.5%

- Colon, except appendix: 9
- Appendix: 5
- Rectum: 4
- Duodenum: 2
- Jejunum: 2
- Ileum: 15
- NAS: 6
- Other: 5.5

Definitions

• Neuroendocrine: High Grade or Low grade
• Carcinoid is low grade: WDNT
• In Pancreas: Islet cell carcinoma
• In Lung: Further divided
 • Typical – few mitoses, no necrosis
 • Atypical – 2 mitoses per 10 HPF
Definitions

- Serotonin: Biological peptide
- Somatostatin: Protein which binds to somatostatin receptor to regulate the amines and peptides secreted
- Octreotide is a synthetic somatostatin analog (SSA)
- Trade name is Sandostatin and Sandostatin LAR
Outline

1. Presentation
 - Many discovered incidentally
 - Symptoms due to:
 - Local tumour mass
 - Tumor-engendered fibrosis
 - Carcinoid Syndrome:
 - Secretion of biologically active amines and peptides
 - Carcinoid crisis
 - Carcinoid heart disease

2. Diagnostic Work up and Follow
3. Role of Surgery/ RFA/ Cryo
4. Role of Peptide Receptor Radionuclide Therapy
5. Role of Biologics and Somatostatin Analogs
6. Role of Systemic Therapy
 - Chemotherapy and Novel drugs

Molecular biology to clinical features

<table>
<thead>
<tr>
<th>Primary-site (Pt with met dz)</th>
<th>Median survival (months)</th>
<th>Described molecular abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>13.1</td>
<td>Chr 11q, 3p loss</td>
</tr>
<tr>
<td>Stomach</td>
<td>9.7</td>
<td>Chr 11q, 18, X loss</td>
</tr>
<tr>
<td>Pancreas</td>
<td>31.0</td>
<td>Chr 11q deletion, karyotypic instability, MEN 1</td>
</tr>
<tr>
<td>Small bowel</td>
<td>50.7</td>
<td>Chr 18 loss, 18q loss</td>
</tr>
<tr>
<td>Appendix/ileum</td>
<td>42.0</td>
<td>Chr 18 loss, 18q loss</td>
</tr>
<tr>
<td>Colon/rectum</td>
<td>8.6</td>
<td>NRP-2 loss</td>
</tr>
</tbody>
</table>
Carcinoid Crisis

- Life-threatening
- Spontaneously or precipitated by anesthesia, chemotherapy, infection or embolization procedures
- Severe flushing, diarrhea, hypo/hyper tension, tachycardia
- Immediate therapy iv octreotide
- Close monitoring before, during, and after surgical treatment

Carcinoid Heart Disease

- 40% metastatic carcinoid tumors usually with liver metastases
- Pathology:
 - Thickening of right heart valves: fibrotic plaques
 - Valve insufficiency, RHF

Carcinoid Heart Disease: Mechanisms

- Serotonin plays important role
- Serotonin receptors subtype 1B present in subendocardial cells
- Significant correlation between carcinoid heart disease and urinary 5-HIAA
• 1. Presentation
• 2. Diagnostic Work up and Follow

Work Up
• Biopsy
• Pathology: Ki 67 < or > 10 %
• CT/ MRI/ Ultrasound
• Octreotide and MIBG Nuclear Scans
• 24 hour urine 5HIAA
• Serum Chromogranin A
• PET (Europe)

Diagnosis: CT/MRI

Nuclear Peptide Scans
• Both MIBG and somatostatin receptors are on carcinoid tumors and overexpressed
• Diagnostic Studies
• Indium 131 or I123 MIBG: sens 50%
• Indium 111 Octreotide sens 80%

Contrast-enhanced CT scan (top) and MRI (bottom) of patient with metastatic small bowel carcinoid
Diagnosis: OctreoScan

Anterior

Posterior

Diagnosis: Biochemical markers

• 5-HIAA Urine
 • Normal 3–15 mg/24 h urine
 • Baseline and 3- to 4-month in first year
 • Repeat if:
 * Disease progression is found
 * Change in therapy is being considered

• CgA Serum
 • Measure every 3 months in first year, then as per disease progresses
PET

• FDG-PET helpful in localizing high grade neuroendocrine but not low grade
• 18F-DOPA PET better but less available
• Swiss : 11C-5HTP (5-hydroxytryptophan) for PET 5HTP precursor in serotonin
• 90% localized but 20 min half life

PET with 11C-5-hydroxytryptophan showing insulinoma in head of pancreas

Definition of the Problem

• 75% will develop liver metastases
• 80% with liver mets will die < 5 years
• Progressive liver mets leading cause of mortality (replaced hormone excess)
• Surgery :
 • Local tumor obstruction, bleeding, perforation
 • Symptoms from fibrosis
Controversial

- Role of extended, radical or en bloc resection of the primary tumor
- Role of metastatic resections?
 - Morbidity and mortality?
 - Symptom control?
 - Survival benefit

Aggressive Resections

- Norton et al. 2003: 20 patients with advanced WDET
 - 15/20 (75%) underwent complete resections
 - Pancreaticoduodenectomy – 8
 - Superior mesenteric vein resection/reconstruction – 3
 - Splenectomy – 11
 - Nephrectomy – 2
 - Liver resections – 6
 - Morbidity = 30%
 - Mortality = 0
 - Actuarial 5 yr-survival = 80%
 - Disease free-survival: all recurred by 7 years

<table>
<thead>
<tr>
<th>Author/Institution</th>
<th>Year</th>
<th>Patients</th>
<th>Operative Mortality(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Que/Mayo</td>
<td>1995</td>
<td>74</td>
<td>3</td>
</tr>
<tr>
<td>Doussetti/Paris</td>
<td>1996</td>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>Chen/Hopkins</td>
<td>1998</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Chamberlain/MSKCC</td>
<td>1999</td>
<td>34</td>
<td>6</td>
</tr>
<tr>
<td>Yao/Northwestern</td>
<td>2001</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Elias/Institut Gustave</td>
<td>2002</td>
<td>47</td>
<td>5</td>
</tr>
<tr>
<td>Sarmiento/Mayo</td>
<td>2003</td>
<td>170</td>
<td>1.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author/Institution</th>
<th>Year</th>
<th>Patients</th>
<th>Symptom Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Que/Mayo</td>
<td>1995</td>
<td>74</td>
<td>90</td>
</tr>
<tr>
<td>Doussetti/Paris</td>
<td>1996</td>
<td>17</td>
<td>88</td>
</tr>
<tr>
<td>Chen/Hopkins</td>
<td>1998</td>
<td>15</td>
<td>---</td>
</tr>
<tr>
<td>Chamberlain/MSKCC</td>
<td>1999</td>
<td>34</td>
<td>90</td>
</tr>
<tr>
<td>Yao/Northwestern</td>
<td>2001</td>
<td>16</td>
<td>71</td>
</tr>
<tr>
<td>Elias/Institut Gustave</td>
<td>2002</td>
<td>47</td>
<td>---</td>
</tr>
<tr>
<td>Sarmiento/Mayo</td>
<td>2003</td>
<td>170</td>
<td>96</td>
</tr>
<tr>
<td>Author/Institution</td>
<td>Year</td>
<td>Patients</td>
<td>Survival(%)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Que/Mayo</td>
<td>1995</td>
<td>74</td>
<td>73% at 4y</td>
</tr>
<tr>
<td>Doussett/Paris</td>
<td>1996</td>
<td>17</td>
<td>49% at 4y</td>
</tr>
<tr>
<td>Chen/Hopkins</td>
<td>1998</td>
<td>15</td>
<td>73% at 5y</td>
</tr>
<tr>
<td>Chamberlain/MSKCC1999</td>
<td>1999</td>
<td>34</td>
<td>76% at 5y</td>
</tr>
<tr>
<td>Yao/Northwestern</td>
<td>2001</td>
<td>16</td>
<td>70% at 5y</td>
</tr>
<tr>
<td>Elias/Institut Gustave</td>
<td>2002</td>
<td>47</td>
<td>71% at 5y</td>
</tr>
<tr>
<td>Sarmiento/Mayo</td>
<td>2003</td>
<td>170</td>
<td>61% at 5y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author</th>
<th>Func/Non</th>
<th>Sync/Metac</th>
<th>#Mets</th>
<th>%Liver</th>
<th>Compl/Inc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Que</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Doussett</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Chen</td>
<td>no</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chamberlain</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Yao</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Elias</td>
<td>-</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Sarmiento</td>
<td>no</td>
<td>-</td>
<td>-</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

Hepatic Artery Embolization

Moertel et al, 1994
Embolization
Chemoembolization (Doxo, DTIC, STZ, 5FU)

Embolization
Chemoembolization

Eriksson B et al, 1998
Embolization

Kim YH et al, 1999
Chemoembolization

Diamandidou et al, 1998
Chemoembolization

<table>
<thead>
<tr>
<th>Author</th>
<th>Func/Non</th>
<th>Sync/Metac</th>
<th>#Mets</th>
<th>%Liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moertel et al, 1994</td>
<td>n=111</td>
<td>Embolization</td>
<td>60%</td>
<td>4 mo</td>
</tr>
<tr>
<td>Eriksson B et al, 1998</td>
<td>n=29</td>
<td>Embolization</td>
<td>38%</td>
<td>7 mo</td>
</tr>
<tr>
<td>Kim YH et al, 1999</td>
<td>n=30</td>
<td>Chemoembolization</td>
<td>37%</td>
<td>24 mo</td>
</tr>
<tr>
<td>Diamandidou et al, 1998</td>
<td>n=20</td>
<td>Chemoembolization</td>
<td>78%</td>
<td></td>
</tr>
</tbody>
</table>

Chemoembolization: Carcinoid Crisis

- Response of carcinoid crisis to somatostatin analogue therapy.
Radiofrequency Ablation: Results

Percutaneous: 43 neuroendocrine metastases in 21 pts
- 7 complications
- 5% recurrence at 6 months
- 4/15 had no residual tumor

Laparoscopic RF: 34 neuroendocrine metastases
- 88% had decreased symptoms
- 60% decreased hormonal tumor markers
- 20% developed new lesions
- 41% stable disease

Liver transplantation in malignant neuroendocrine tumors

(Lehnert T. Transplantation 1998;66:1307)

Total no. of patients	103
EPT	48
Carcinoids	43

2-year survival 60%
5-year survival 47%
Recurrent free survival 24%

Surgical Conclusions

• Aggressive resections can be done, acceptable morbidity and mortality
• Improved symptom control and extended survival likely
• Patients to benefit the most are those rendered disease free
• Precise patient selection and disease extent
• Ultimate disease recurrent and progression likely
• An initial period of medical therapy is often recommended to allow time for observation and make surgery or ablation safer

Outline

• 1. Presentation
• 2. Diagnostic Work up and Follow
• 3. Role of Surgery
• 4. Role of Peptide Receptor Radionuclide Therapy
Nuclear Peptide Targeted Therapy

- Diagnostic 113I MIBG: If positive: potential treat with high dose 131-iodine-MIBG
- 111 Indium-Octreotide: If positive: potential treat with high dose
 - 111 Indium-octreotide
 - 90 Yttrium-octreotide
 - 177 Lutetium-octreotide
- RR 10-40% Survival Benefit?
- Considered Investigational

Tumor targeted irradiation in neuroendocrine tumors

- 111Ind-DTPA-octreotide n=38 (Krenning et al, 1999)
 - Total dose 20 Gbq
 - Radiological response 30%
 - Disease stabilization 40%

- 90Y-DOTATOC n=22 (Valkema et al, 2000)
 - Phase I
 - Radiological response 10%
 - Disease stabilization 45%

- 90Y-DOTATOC (6000 MBq/d) n=41 (Waldherr et al, 2001)
 - CR+PR 24%
 - MR+SD 61%

Outline

- 1. Presentation
- 2. Diagnostic Work up and Follow
- 3. Role of Surgery
- 4. Role of Peptide Receptor Radionuclide Therapy
- 5. Role of Biologics and Sandostatin Analogs (SSA)
Biologics: Interferon

- Biochemical response in 40%
- Tumor response seen in <10%
- Side effects: fever, fatigue, anorexia, weight loss, alopecia, myelosuppression, liver dysfunction, clinical depression
- Used in Europe not North America

Somatostatin Analogs: SSA

- Somatostatin analogs bind to somatostatin receptors
- Biochemical responses > 70%
- Objective response < 5 %
- No survival benefit? Cytostatic
- ? Super high doses
Sandostatin BCCA 2007

• Symptomatic, 5HIAA high: Approved
• Symptomatic, 5HIAA low: Approved
• No symptomatic, 5HIAA high: Approved
 • Goal: prevent carcinoid heart
• No symptomatic, 5HIAA low: Not Approved
 • Goal: Improve survival
 • Controversial not proven

Somatostatin Analogs

• Start with Octreotide 100 ug sc tid for 4 weeks
• At two weeks overlap with Sandostatin LAR at 20 mg q 4 weeks
• Increase at 10 mg increments q3-4 weeks if symptoms not improving or 5 HIAA not dropping

Somatostatin Analogs

• Start with Octreotide 100 ug sc tid for 4 weeks
• At two weeks overlap with Sandostatin LAR at 20 mg q 4 weeks
• Increase at 10 mg increments q3-4 weeks if symptoms not improving or 5 HIAA not dropping

Outline

• 1. Presentation
• 2. Diagnostic Work up and Follow
• 3. Role of Surgery
• 4. Role of Biologics and Sandostatin
• 5. Systemic Treatment
 * Chemotherapy and Novel Therapy

Cytotoxic therapy in carcinoids

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose, regimen</th>
<th>Pts</th>
<th>OR(%)</th>
<th>Median duration (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single agents:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxorubicin (DOX)</td>
<td>60 mg/m² q 3-4 w</td>
<td>81</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>5-FU</td>
<td>500 mg/m² x 5 d q 3-5 w</td>
<td>20</td>
<td>17-26</td>
<td>3</td>
</tr>
<tr>
<td>Streptozotocin (STZ)</td>
<td>580-1000 mg/m² x 5 d q 2-3 w</td>
<td>14</td>
<td>0-17</td>
<td>2</td>
</tr>
<tr>
<td>Decarbazine (DTIC)</td>
<td>250 mg/m² d x 5 d q 4-6 w</td>
<td>15</td>
<td>13</td>
<td>4.5</td>
</tr>
<tr>
<td>Cisplatin/5-FU 90 mg/m² q 3-4 w</td>
<td>6</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combinations:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptozotocin + 5-FU</td>
<td>STZ 500 mg/m² x 5 d q 3-6 w</td>
<td>175</td>
<td>7-33</td>
<td>3-7</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>S-FU 400 mg/m² x 5 q 3-4 w</td>
<td>10</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>Streptozotocin + Doxorubicin</td>
<td>STZ 1000 mg/m² q 4 w</td>
<td>24</td>
<td>30</td>
<td>6.5</td>
</tr>
<tr>
<td>Cyclophosphamide (CTX)</td>
<td>Etoposide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Etoposide</td>
<td>CTX 100 mg/m² x 3 d</td>
<td>13</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>+ Cisplatin</td>
<td>Etop 130 mg/m² x 3 d Cispl 45 mg/m² x 2 and 3 cycle q 4 w</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cytotoxic therapy in carcinoids

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose, regimen</th>
<th>Pts</th>
<th>OR(%)</th>
<th>Median duration (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single agents:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxorubicin (DOX)</td>
<td>60 mg/m² q 3-4 w</td>
<td>81</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>5-FU</td>
<td>500 mg/m² x 5 d q 3-5 w</td>
<td>20</td>
<td>17-26</td>
<td>3</td>
</tr>
<tr>
<td>Streptozotocin (STZ)</td>
<td>580-1000 mg/m² x 5 d q 2-3 w</td>
<td>14</td>
<td>0-17</td>
<td>2</td>
</tr>
<tr>
<td>Decarbazine (DTIC)</td>
<td>250 mg/m² d x 5 d q 4-6 w</td>
<td>15</td>
<td>13</td>
<td>4.5</td>
</tr>
<tr>
<td>Cisplatin/5-FU 90 mg/m² q 3-4 w</td>
<td>6</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combinations:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptozotocin + 5-FU</td>
<td>STZ 500 mg/m² x 5 d q 3-6 w</td>
<td>175</td>
<td>7-33</td>
<td>3-7</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>S-FU 400 mg/m² x 5 q 3-4 w</td>
<td>10</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>Streptozotocin + Doxorubicin</td>
<td>STZ 1000 mg/m² q 4 w</td>
<td>24</td>
<td>30</td>
<td>6.5</td>
</tr>
<tr>
<td>Cyclophosphamide (CTX)</td>
<td>Etoposide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Etoposide</td>
<td>CTX 100 mg/m² x 3 d</td>
<td>13</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>+ Cisplatin</td>
<td>Etop 130 mg/m² x 3 d Cispl 45 mg/m² x 2 and 3 cycle q 4 w</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Carcinoid: Chemotherapy

- Chemotherapy
 - E1281 (JCO 2005)
 - 5FU/doxorubicin
 - PFS = 4.5 months, OS = 15.7 months
 - 5FU/streptozocin
 - PFS = 5.3 months, OS = 24.3 months

BCCA

- **ENDO 1:**
 - Streptozocin/ Adriamycin
 - Streptozocin/ 5 FU
- **ENDO 2:**
 - Carmustine/ 5 FU

New Drugs

mTOR

mTOR (mammalian target of rapamycin) is an intracellular protein (enzyme) that acts as a central regulator for cell growth, transcription, proliferation, and angiogenesis in cancer
mTOR

Controls Cell Growth, Proliferation and Angiogenesis

- mTOR is a kinase in the PI3-K/Akt signaling pathway
- Integrates multiple signals
 - Growth factor receptor activity
 - Cellular energy, nutrients, and oxygen levels
 - Signals from other cellular signaling pathways
 - Estrogen receptor signaling
- Controls production of proteins regulating cell growth, cell division, and angiogenesis in response to these signals

RAD001 (everolimus)

Single Agent Activity in NET

ASCO 2006: Dr J. Yao, MD Anderson (IIT)

17 patients with disease progression at study entry

- 3 PR, 10 SD, 4 PD with RAD001 5 mg/d (10 mg/d ongoing)
- 11 (65%) progression-free at 6 mos

Phase II RADIANT 1 Study in Advanced Pancreatic Islet Cell after Chemotherapy Failure, started in 2006 Ph III in 2007, post-interim analysis of RADIANT 1
Increased VEGF expression is associated with poor prognosis in neuroendocrine tumors.

Inhibiting VEGF

Bevacizumab

- VEGF
- VEGFR-2
- PI3K
- Akt/PKB
- p38MAPK

BAY 43-9006

SU011248 - Sunitinib

- Small molecule TKI
- 50mg daily 4 weeks on – 2 weeks off
- Good oral bioavailability, unaffected by food
- Metabolized in liver via CYP4503A4 (t1/2 40hr, metabolite 80 hr)
- Potential CYP4503A4 interactions
- Active metabolite SU012662
- Linear PK within tested doses (25-150mg)
- ATP site–directed competitive inhibitor
- Directly binds to kinase domain to prevent phosphorylation and activation of substrates

Bevacizumab (BV; rhuMAb VEGF)

- Recombinant humanized anti-VEGF mAb
- Binds and neutralizes all forms of VEGF A
- T1/2 17-21 days

Hair color changes with Sutent

Other VEGF Inhibitors

- Other targeted agents in trial or about to start trials in neuroendocrine tumors
 - SU011248
 - PTK/ZK
 - BAY 43-9006
 - GW788034

Conclusion

• Multimodality approach: Surgery, Medical Oncology, Nuclear medicine, radiology
• Somatostatin Analogs has resulted in significant advances in the management of neuroendocrine tumors
• Therapeutic nuclear treatments evolving and encouraging
• Future lies in new drugs