Surgical Considerations in Breast Cancer treated with Neoadjuvant Therapy

Rebecca Warburton MD
Department of Surgery, University of British Columbia
Mount Saint Joseph Hospital, Providence Health Care
Vancouver, BC

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

No disclosures

Outline

- Who?
- Why?
- Breast
 - BCS v. Mastectomy +/- IBR
- Axilla
 - N0 v. N1

NAT: WHO?

- Inflammatory breast cancer a must
- Inoperable breast cancer
 - skin involvement, fixed tumour, matted adenopathy
- Operable cancer…
 - triple negative, HER 2 pos
 - palpable primary or nodes
- Research patients

NAT: WHY?

- Inoperable LABC to operable BC
- Convert mastectomy to BCS
- Cosmetics:

- "large" lumpectomy to "small" lumpectomy
- mastectomy to skin sparing mastectomy with IBR
- Convert ALND to SLNB in cN0 and cN1*
- Access to resources OR time, IBR
- pCR prognosis, guide adjuvant treatments

Diagnosis to Treatment (NAT or Surgery)

- Breast: Core biopsy histology, biomarkers
 - if pCR only tumour information
 - extent of disease physical exam, mammography, US +/- MRI
 - Tumour localization Clip

- Axilla non invasive and minimally invasive
 - Physical exam error rate 41%, false pos 53%, 10mm
 - Axillary US +/- FNA or core abnormal nodes, sensitive up to 76%,
 5mm

NAT and SURGERY

- Guiding Principles:
 - NAT can increase surgical options
 - No change to OS or DFS
 - NSABP B-18 (1997)

- Clinical Response
 - Partial breast 80%, axilla 89%
 - Complete breast 36% (1/4 pCR), axilla 73% (~1/2 pCR)
- pCR more likely in Her 2 + and triple negative breast cancer

BREAST

- BCS after NAT
 - IBTR

- Margins
- Failure Lobular histology, multicentric disease, diffuse calcs
- Mastectomy after NAT
 - immediate breast reconstruction SSM and NSM

BREAST - BCS and NAT

- IBTR increased rates of BCS with NAT (12%)
 - RCT BCS gives acceptable local control
 - NSABP B-18, EORTC 10902
 - Meta-analysis NAT v adjuvant chemo small but significant increase in LRR with NAT
 - No difference in all patients undergo surgical resection

BREAST - BCS and NAT

IBTR

- Predict LRR MD Anderson prognostic tool
 - N2/3 (clinical), residual tumour of 2cm (pathology), multifocal tumour pattern (pathology), LVI

Risk Stratification	Score	5yr IBTR-free survival	5yr LRR-free survival	
Low	0-1	97%	94%	
Intermediate	2-3	88%	83%	
High	4	82%	58%	

BREAST - MASTECTOMY and NAT

- Mastectomy limited response to NAT, multicentric disease, failed BCS
- Immediate breast reconstruction: SSM, NSM
 - NAT
 - less likely to have IBR after mastectomy 23% v.
 44%
 - More likely to have delayed BR 21% v. 14%

BREAST - MASTECTOMY and NAT

- Wound complications ACS-NSQIP
 - NAT does not increase risk of wound complications (3.4% v 3.1%)
 - trend towards increased wound infection with NAT and IBR (OR, 1.58)

Decker, Surgery 2012 Sep;152(3)

Invasive Breast Cancer at PHC BC

Jan 1, 2012 - Dec 31, 2015 n= 1666

Exclude recurrence and DCIS

Invasive Breast Cancer at PHC BC

Invasive Breast Cancer at PHC BC

NAT increases BCS by 12% and reduce IBR by 50%

How you want to be treated.

BCS failure rate

NAT - 7%

SURG - 6%

pCR rate

ALL - 33%

BCS - 43%

Mast - 30%

AXILLA - NAT

- Guiding principles:
 - large tumours considering NAT will often be node positive (60-80%)
 - Clinically negative exam and imaging (US)
 - N1 should be pathology not imaging
 - Decision on axilla management should be made by surgeon at consultation

AXILLA - NO

SLNB

How you want to be treated.

- post-NAT early studies (2000-2005) had variable and unacceptable rates of
 - identification of SLNs 70-100%
 - false negative rates 0-39%

• REMINDER - NSABP B32 - ID 97.1% and FNR 9.8%

AXILLA - NO

- MDACC Hunt, Ann Surg 2009
 - T1-3,cN0 SLNB 1994-2007 n=3746
 - 15% NAT, 85% surgery
 - ID rate 97.4% NAT v. 98.7% Surg
 - FNR 5.9% NAT v. 4.1% Surg
 - Fewer SLN +ve patients in NAT (presenting T stage)
 - Conclusion: SLNB after NAT is as accurate as SLNB prior to chemotherapy. Fewer ALND and reduced morbidity

AXILLA - NO

- SLNB after NAT multi-centre data, T1-3,N0-1
 - NSABP B-27 2005, n=428 (no defined protocol)
 - ID 85% (BD+RD 88%)
 - FNR 11% (BD+RD 9%)
 - GANEA 2009, n= 195 (BD+RD)
 - ID cN0 94.6% v. cN1 81.5%
 - FNR cN0 9.4% v. cN1 15%

AXILLA - N1

- Most surgeons comfortable with SLNB after NAT in N0
- N1 1990s MDACC T1-4,N1-3 (FNA or core LN) n=69
 - SLNB after NAT ID 92.8% but FNR 25%
 - deemed feasible but FNR too high
 - Issues: small, advanced disease (T4N3)
 - Added post-NAT axillary US ID 93% and FNR 20%

AXILLA - N1

- Prospective Studies Tany, N1-2 NAT SLNB+ALND
 - Alliance/Z1071 n=756, single arm
 - FNR 2+nodes removed
 - SENTINA n=592, 1 of 4 arms
 - ID and FNR, not all path N1, repeat SLNB (not recommended)
 - SN FNAC n=153, single arm
 - accuracy/feasibility

AXILLA - N1

TABLE 2 FNR according to number of SLNs removed and type of lymphatic mapping in three prospective trials of SLNB after NC in patients with documented axillary nodal involvement at presentation

	ACOSOG Z1071 ⁸⁶ ($n = 756$)	SENTINA ⁸⁷ $(n = 592)$	FN SNAC ⁸⁸ $(n = 153)$	Across studies
FNR with single SLN	31.5 %	24.3 %	18.2 %	26.0 %
	17/54	17/70	4/22	38/146
FNR with ≥ 2 SLNs	12.6 %	9.6 %	4.9 %	10.8 %
	39/310	15/156	3/61	57/527
FNR with >2 SLNs	9.1 %	4.9 %	N/A	7.8 %
	20/220	5/102		25/322
FNR with dual tracer	10.8 %	8.6 %	5.2 %	10.3 %
	27/251	6/70	3/58	33/321

FNR false-negative rate, N/A not available

FNR decrease with dual tracer and 2+ nodes removed

Mamounas, Ann Surg Oncol 2015

AXILLA - N1 - Novel ways to reduce FNR with TAD

- Feasibility studies
- MDACC clips in nodal metastasis, SLNB with no clip 25%, ALND in all patients (SSO, 2015)
 - TAD targeted axillary dissection + SLNB
 - removed clipped node (wire)
 - Radioactive seed localization clip node, 5d prior to surgery seed inserted (iodine), RD+BD
- Netherlands radioactive seed at diagnosis, only removed seed with gamma probe and ALND (no SLNB)
 - ID 97%, FNR 7%

AXILLA - N0 and N1

- N0 after NAT is a predictor of good prognosis (NSABP B-17, 18)
 - did NAT render them N0 or were they always N0
- up to 42% ALND after NAT in N1 will be N0 (Alvarado, Ann Surg Oncol 2012)
 - SLNB can accurately remove those nodes and avoid ALND?
- ID rate ALND as default

- SN FNAC accuracy of axillary status after NAT
 - Clinical exam 45%, US 62%, SLNB 95%
- Any SLN pos after NAT requires ALND..... currently

AXILLA - N1 The FUTURE

- NSABP 51/RTOG 1304 -
 - cN1 NAT SLNB/ALND N0- RTx v. no RTx
- Alliance A11202
 - cN1 NAT SLNB positive RTx v. RTx and ALND
- MDACC
 - cN1 NAT FNA v. surgery

Summary

- NAT for inflammatory BC and inoperable LABC
- Patient selection for NAT in operable BC think pCR
 - Her 2 + and triple negative
- Surgical plan set at consultation and adjusted based on clinical response
- BCS after NAT LRR is equal, beware of multifocal response and + margin
 - Consider pre-chemo and pre-surgery imaging (MRI)
- Mastectomy and IBR after NAT safe

Summary

- Axilla responds better then breast
- cN0 SLNB after NAT is accurate, reduces over treatment of chemosensitive disease and morbidity
- cN1 ? standard ALND
 - SLNB is feasible and accurate to start be selective
 - 2 or more nodes, dual tracer
 - clipping nodes and TAD ugh
 - fixing a problem that we may not have?

Thank You

Just a reminder that mammogramming your boobs is more important than Instagramming them.

