Update on PET Imaging in Breast Cancer

Surgical Oncology Network
Breast Cancer Conference

April 24th, 2004

Don Wilson, BSc, MD, FRCPC (Nuc Med), FRCPC (Rad Onc)
Medical Director, BCCA Centre of Excellence for Functional Cancer Imaging

Why PET?

- Isotopes of naturally occurring elements
- High sensitivity
- Accurate quantification
- Whole body scan capability
- High clinical sensitivity & specificity
Advantages of PET over Anatomical Imaging

- Functional change often precedes anatomical change
- Benign vs malignant
- Post-treatment change vs recurrence
- Ideally suited for pre-clinical and clinical imaging of cancer biology

Potential Role for PET

- Characterization of breast lesions
- Axillary lymph node staging
- *Restaging/detection of recurrent disease
- *Evaluation of response to treatment

*Medicare approved for reimbursement in USA
Normal Variants and Biologic Correlates

- 18F-FDG uptake in breast cancer correlates with:
 - Microvasculature
 - Glucose transporter expression
 - Tumor volume
 - Proliferation rate

- FDG localization higher in:
 - Ductal vs lobular carcinoma
 - Grade 3 vs grade 1-2 carcinomas

Normal Variants and Biologic Correlates

- Increased FDG uptake may be seen in:
 - Dense breasts/young patients
 - Lactating breasts
 - Mastitis
 - Recent incisions/hematomas
 - Some fibroadenomas
 - Muscle and brown fat
Characterization of Primary Breast Cancer

- No role in detection/diagnosis of non-invasive breast cancer
- Invasive disease sensitivity 83 – 93%
- Results of FDG-PET vary as a result of the heterogeneity of breast cancers
 - False negatives: <1cm, well differentiated (tubular, lobular histologies)

<table>
<thead>
<tr>
<th>Size</th>
<th>Patients</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>In situ</td>
<td>12</td>
<td>42%</td>
</tr>
<tr>
<td>< 2 cm</td>
<td>44</td>
<td>68%</td>
</tr>
<tr>
<td>2 – 5 cm</td>
<td>62</td>
<td>92%</td>
</tr>
<tr>
<td>>5 cm</td>
<td>14</td>
<td>100%</td>
</tr>
<tr>
<td>Invas. Ductal</td>
<td>97</td>
<td>76%</td>
</tr>
<tr>
<td>Invas. Lobular</td>
<td>23</td>
<td>35%</td>
</tr>
</tbody>
</table>

Characterization of Primary Breast Cancer

- Recent metaanalysis* showed a NPV of 88% (diagnosis missed in 12%)
- FDG-PET not suitable for breast cancer screening
- Development of dedicated PET instrumentation may increase role of PET in diagnosis of breast cancer

Initial Staging of the Axilla

Effectiveness for occult axillary disease

Centers for Medicare and Medicaid services (CMS)

- Metaanalysis 203 pts (4 studies) 2002
 - confirmed breast cancer
 - no palpable axillary nodes
 - no distant mets
 - PET before node dissection
Initial Staging of the Axilla

- Pooled sensitivity 81% (40-93%)
- Specificity 95% (87-100%)

Conclusions:
False negative rate for PET too high (19%)
- Axillary node sampling should remain the standard of care.

Prospective, multicenter trial 360 pts with newly diagnosed invasive breast cancer
- Mean sensitivity 61% (54-67%)
- Mean specificity 80% (79-81%)
- Nodal SUV >1.8 PPV 90% but sensitivity of 32%
Initial Staging of the Axilla

Conclusion:

- FDG-PET often fails to detect axillae with few and small nodal mets.
- Not routinely recommended for axillary staging in newly diagnosed breast cancer pts.

Internal Mammary/Mediastinal Lymph Node Metastases

Eubank et al., J Clin Onc 2001; 19: 3519 – 3523

73 consecutive pts with recurrent or metastatic dx

<table>
<thead>
<tr>
<th></th>
<th>CT</th>
<th>PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>54%</td>
<td>85%</td>
</tr>
<tr>
<td>Specificity</td>
<td>85%</td>
<td>90%</td>
</tr>
<tr>
<td>Accuracy</td>
<td>73%</td>
<td>88%</td>
</tr>
</tbody>
</table>
Left breast cancer with internal mammary lymph node metastasis

Delineating Recurrent and Metastatic Disease

Hubner et al., Clin Posit Imag. 2000; 3: 197-205

<table>
<thead>
<tr>
<th></th>
<th>CT</th>
<th>PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>71%</td>
<td>85%</td>
</tr>
<tr>
<td>Specificity</td>
<td>54%</td>
<td>73%</td>
</tr>
</tbody>
</table>
76 yo woman. Tc-99 MDP bone scan shows increased uptake in lumbar spine due to degenerative change (false positive) whereas FDG-PET is normal (true neg finding).

Ohta, Nuc Med Commun 2001; 22(8): 875-879

Delineating Recurrent and Metastatic Disease

- 57 pts suspected disease recurrence
- Sensitivity 93%
- Specificity 79%

- Nonosseous mets only – Sensitivity 96%
Recurrent Breast cancer involving left axillary and supraclavicular lymph nodes. MRI interpreted as post-radiotherapy fibrosis

UCLA School of Medicine

Delineating Recurrent and Metastatic Disease

Limitations of PET:

- Lower sensitivity than bone scan for osseous mets
 - PET better than bone scan for osteolytic lesions
- Not sensitive for detecting brain mets
- Resolution

BCCA
Delineating Recurrent and Metastatic Disease

Vranjesevic et al., J Nuc Med., 2002, 43; 325-329

Prediction of Outcome by PET

61 women Reason of PET Evaluation:
69% evaluation for residual/recurrent dx
16% evaluation of increasing tumor markers
15% suspicious findings on CT

PET done within 3 mos of CI and correlated with clinical outcome

<table>
<thead>
<tr>
<th></th>
<th>CI*</th>
<th>PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>79%</td>
<td>93%</td>
</tr>
<tr>
<td>Specificity</td>
<td>68%</td>
<td>84%</td>
</tr>
<tr>
<td>NPV</td>
<td>59%</td>
<td>80%</td>
</tr>
</tbody>
</table>

*Conventional imaging (X-ray, bone scan, CT, MRI, US)

PET significantly better in predicting DFS
Delineating Recurrent and Metastatic Disease

Vranjesvic et al., J Nuc Med., 2002, 43; 325-329

Kaplan-Meier estimates of disease free survival

Delineating Recurrent and Metastatic Disease

Impact on Patient Management

Yap et al., J Nuc Med, 2001; 42: 1334-1337

- Prospective survey 160 breast cancer patients
- PET changed the clinical stage in 36%
 - 28% upstaged
 - 8% downstaged
- Resulted in:
 - intermodality changes in 28%
 - intramodality changes in 30%
Evaluating Treatment Response

- Earlier recognition of ineffective therapy
 - allow change to an alternative, more effective regimen
 - avoid morbidity and costs
- Potential roles:
 - neoadjuvant (locally advanced)
 - distant metastatic disease

Metabolic change precedes anatomic change

Evaluating Treatment Response

- Rapid decrease in glucose metabolism in responders can be detected as early as after the first cycle of CTX
- Serial measurements of SUV
Financial Considerations

FDG-PET is expensive
- PET scanner ~2–5 million $CAD
- Cost per scan ~$2000
- FDG-PET can be cost-effective
 - Demonstrated in lung, colon, melanoma etc
 - PET potentially reduces ineffective/unnecessary treatment and morbidity

Conclusions
- Role of FDG-PET in characterizing breast cancers remains to be defined.
- PET cannot detect micrometastases and should not replace surgical staging of axillary nodes.
- PET is not indicated in the routine assessment of primary breast cancer.
Conclusions

- PET can detect metastatic disease missed by CI and may be considered when staging or restaging patients with known or suspected distant mets.
 - CI is equivocal or confusing
 - eg. liver lesions, brachial plexopathy, equivocal bone scan
 - Restaging prior to aggressive local therapy
 - Rising tumor markers

- PET may be useful for early therapy evaluation in pts with locally advanced and/or metastatic disease.
Future Prospects

- New technologies will increase the role of PET in breast cancer:
 - Higher resolution scanners
 - PET/CT
 - PET/stereotactic mammography units
 - Gamma probes for PET isotopes

Molecular Imaging with PET in Breast Cancer

<table>
<thead>
<tr>
<th>PET Tracer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose metabolism</td>
</tr>
<tr>
<td>18F-FDG</td>
</tr>
<tr>
<td>Cell proliferation</td>
</tr>
<tr>
<td>18F-thymidine</td>
</tr>
<tr>
<td>Hypoxia</td>
</tr>
<tr>
<td>18F-FMISO</td>
</tr>
<tr>
<td>Protein synthesis</td>
</tr>
<tr>
<td>11C-methionine</td>
</tr>
<tr>
<td>Receptors</td>
</tr>
<tr>
<td>18F-estradiol, HER2/neu minibody</td>
</tr>
<tr>
<td>Gene expression</td>
</tr>
<tr>
<td>18F-antisense oligonucleotides</td>
</tr>
</tbody>
</table>
PET/CT Design

Somatom AR.SP

PET/CT scanner

ECAT ART

CT

Fused image viewer

PET
PET/CT scanners:

Renal Cancer
46 year old male with renal cancer, status post nephrectomy and chemotherapy. Biograph identified mediastinal lymph node metastasis.

Scan protocol:
- **CT** 100 mAs, 130 kV, pitch 1.5, 5 mm slice width
- **PET** 555 MBq FDG, 180 min p.i., 5 min/bed, 6 beds, 30 min scan time

Data Courtesy of Indiana University PET Imaging Center

BCCA
Hepatocellular Cancer
42 year old female referred with stomach pain. Ultrasound showed multiple liver lesions. PET/CT to evaluate partial liver resection and partial living donor transplantation. Biograph identified no distant metastases; liver tumor penetration of diaphragm. Transplantation cancelled.

Scan protocol:
- CT: 125 mAs, 130 kV, pitch 1.5, 5 mm slice width
- PET: 388 MBq FDG, 60 min p.i., 5 min/bed, 6 beds

Data Courtesy of University Hospital Essen

Lung Cancer
Case: 63 year old male with a mass in the right lung. Biograph LSO identified peripheral lesion activity.

Scan protocol:
- CT: i.v. and oral contrast, 100 mAs, 130 kVp, 5 mm slices
- PET: 500 MBq FDG, 60 min p.i., 2 min/bed, 6 beds, 12 min scan time

Data Courtesy of Hong Kong Baptist Hospital
Commercial PET/CT Scanners

Siemens/CTI Phillips/ADAC GE Medical Systems

Monitoring Response to Treatment

In NSCLC, a single, early post-treatment PET scan is a better predictor of response than:
- CT response
- stage
- pre-treatment performance status

Mach Manus: J Clin Oncol, Volume 21(7). April 1, 2003.1285-1292
Limitations of FDG-PET

- Resolution
- Sensitivity may be less for low grade tumors
- Patient may move during scan
- Brown fat, sarcoidosis, benign inflammation – false positives

Breast Cancer

<table>
<thead>
<tr>
<th></th>
<th>Patient Studies</th>
<th>Sensitivity PET</th>
<th>Sensitivity CT</th>
<th>Specificity PET</th>
<th>Specificity CT</th>
<th>Accuracy PET</th>
<th>Accuracy CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td>318</td>
<td>91</td>
<td>93</td>
<td>93</td>
<td></td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Staging</td>
<td>2034</td>
<td>91</td>
<td>63</td>
<td>88</td>
<td>96</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>Dx/Staging</td>
<td>65</td>
<td>75</td>
<td>83</td>
<td></td>
<td></td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Recurrence</td>
<td>977</td>
<td>80</td>
<td>90</td>
<td>85</td>
<td>96</td>
<td>82</td>
<td>89</td>
</tr>
<tr>
<td>Monitoring Response</td>
<td>269</td>
<td>81</td>
<td>96</td>
<td></td>
<td></td>
<td>92</td>
<td></td>
</tr>
</tbody>
</table>

A tabulated Summary of the FDG PET Literature. J of Nucl Med. 2001 May; 42 (5 Suppl)
Trends in FDG-PET Oncology

- Identify functional change
- Diagnose disease
- Stage disease
- Plan patient specific treatment
- Monitor disease response

Why PET?

- Isotopes of naturally occurring elements
- High sensitivity
- Accurate quantification
- Whole body scan capability
- High clinical sensitivity & specificity
The Role of FDG-PET in Breast Cancer

- Indications for FDG-PET Imaging
 - Staging after tissue diagnosis if suspicion of distant metastases is high
 - Restaging after treatment or recurrence
 - Evaluation of response to therapy

68 yo patient with breast cancer and chest wall pain
Limitations of Conventional Imaging in Oncology

- Functional change often precedes anatomical change
 - Diagnosis and staging
 - Residual mass
 - Anatomical regression takes time
- Treatment related new findings

50 yo woman. FDG-PET (A,B) shows met in spine which is not seen in Tc-99m MDP bone scan (C) (false neg).

Yang, J Cancer Res Clin Onc 2002; 128(6): 325-328
Internal Mammary/Mediastinal Lymph Node Metastases

Multicentre Study to Assess the Positive Predictive Value of PET in the Preoperative Evaluation on Internal Mammary Lymph Nodes in Breast Cancer Subjects

Status: ongoing

Anatomical versus Functional Imaging

CT

FDG-PET