

Local Excision of Rectal Cancer Techniques and Outcomes

Manoj J. Raval, MD, MSc, FRCSC Clinical Assistant Professor, UBC Rectal Cancer Update 2008 October 25, 2008

Overview

- Techniques & Description
- Patient Selection
 - Patient factors
 - Disease factors
 - Preop staging
- Oncologic Results vs. Radical Surgery
- Role of Adjuvant Therapy
- Salvage Therapy for Recurrence

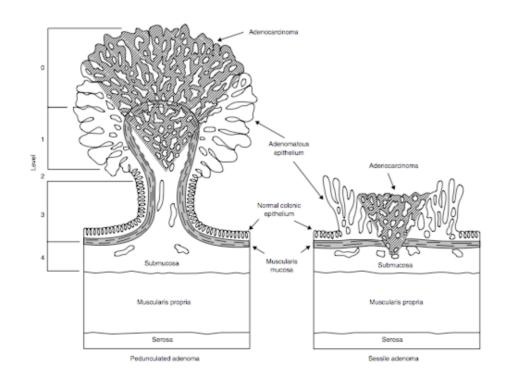
Techniques

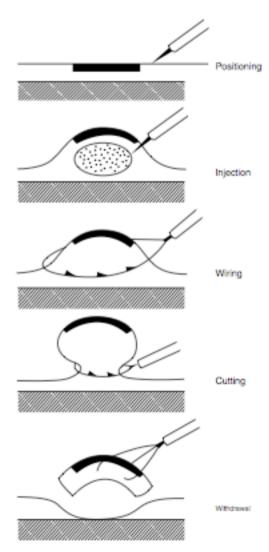
- Polypectomy
- Endoscopic Mucosal Resection (EMR)
- Conventional Transanal Resection
- Transanal Endoscopic Microsurgery (TEM)
- Kraske
- York-Mason

Posterior Approaches

- Kraske (Transsacral resection)
 - Prone jackknife
 - Incision 2-10 cm from anal verge posterior midline
 - Dissect down to and divide anococcygeal ligament
 - Resect coccyx and lower 2 segments sacrum
 - Divide Waldeyer's fascia
 - Sleeve resection or proctomy/resection with 1 cm margin
 - 20% fecal fistula

Posterior Approaches

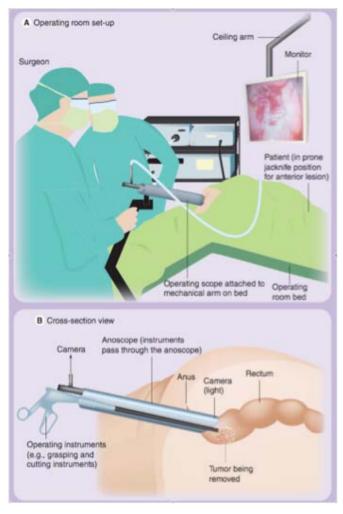

- York-Mason (Transsphincteric resection)
 - Prone jackknife
 - Transect entire sphincter complex incl puborectalis, tag components to resuture
 - Sleeve resection or proctotomy/resection
 - Reconstitute sphincter
 - Incontinence/fecal fistula



Polypectomy/EMR

- For benign lesions
- Tattoo suspicious lesions

Transanal Excision



- Lithotomy for posterior lesions, prone for anterior
- Good lighting (headlight, lighted retractor)
- Cautery score 1 cm margin
- Full thickness rectal wall excision (careful anteriorly)
- Babcock prolapse for more proximal lesions
- Pin & orient lesion
- Palpate mesorectal fat for nodes
- Suture closed

Transanal Endoscopic Microsurgery (TEM)

TEM

- Described in 1984 (Buess et al.)
- 40mm operating insufflating proctoscope
- Lesions from 5-25 cm
- Full thickness resection (may include nodes)
- 1 cm margin
- Suture closure or left open
- Home next day

TEM

- Not widely available
- Technically challenging
- Time consuming
- Expensive

TEM

When to Consider Local Excision?

- Aim for cure
- Early (T1, T2?)
- Lymph node involvement
- High risk pathologic features
- Technically possible (height, size/ % circumference)
- Patient at high risk for radical resection
- Palliative

Why do Local Excision?

- Sphincter preservation (even very low rectal cancers)
- Minimal mortality/morbidity
- Minimal hospital stay/recovery
- No risk of genitourinary dysfunction

Keep in mind...

 Kapitejn et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. NEJM 2001.

T1-2, N0 lesions: 0.7% recurrence rate

- Find Stage I cancers
- Preoperative Staging
 - Clinical examination (DRE)
 - 70% accuracy T-stage, 50% N-stage
 - ERUS
 - 90% T-stage, 80% N-stage
 - MRI
 - 80-90% T-stage, 70% N-stage
 - -CT
 - Local invasion, distant mets

T-stage vs. nodal status

- T1: 0-12% +nodes

- T2: 12-28%

- T3: 49-79%

Tumour grade:

- 14% +nodes if well- or moderatelydifferentiated T1/2
- 30% +nodes if poorly differentiated

- Lymphovascular/Perineural Invasion
 - 14-17% if no LVPI
 - -33% if +LVPI

- Blumberg et al. Dis Col Rectum 1999; 42(7):881-5
- St. Mark's Lymph Node Positivity Model
 - www.riskprediction.org.uk/index-lnp.php

 Depth of submucosal invasion in T1 cancers (sm1/2/3) – Kikuchi et al. Dis Col Rectum 1995; Nascimbeni et al. Dis Col Rectum 2002

• Sm1: 0-3% node+

• Sm2: 8-10%

Sm3: 23-25%

Sm1a
Less than a quarter of the width of the tumour invading the submucosa

Sm1b

Quarter to half the width of the tumour invading the submucosa

Sm1c

More than half the width of the tumour invading the submucosa

Sm2 Intermediate between Sm1 and Sm3

Sm3
Carcinoma invasion near to the muscularis propria

Invasion to a depth of 200-300 µm

Fig. 4 Kikuchi classification of adenocarcinoma in a sessile polyp⁷⁹. Sm, submucosal layer

- Palliative
 - small lesion, distant mets

- High risk patient
 - Multiple comorbidities

- Patient refuses colostomy, risk of sexual dysfunction, etc.
 - Willing to accept higher recurrence rate

Results: Transanal

- Early series (up to 1990s)
 - Recurrence rate T1 cancers 0-4% to 17-33%

 No randomized controlled trials comparing conventional transanal to radical surgery

Best evidence from cohort studies

Results: Transanal

Results of Local Excision Alone According to T Stage for Rectal Cancer

			T1 T	umor	T2 Tumor	
Study	Year	No. of Patients	DFS	DFS	DFS	LR
Stipa et al. 51	2004	47	92	16	75	20
Maeda et al.52	2004	91	_	2	_	15
Gopaul et al.2	2004	64	_	13	_	24
Gao et al.36	2003	47	94	11	83	27
Patty et al.37	2002	94	92	14	87	28
Garcia-Aguilar et al.9	2000	82	77	18	63	37
Mellgren et al.7	2000	108	72	18	65	47
Steele et al.4	1999	110	83	_	71	_
Chakravarti et al.53	1999	52	80	11	33	_
Faivre et al.54	1996	126	84	_	65	_
Sticca et al.55	1996	71	91	0	88	10
Baron et al.56	1995	76	86	19	89	21

DFS = five-year disease-free survival; LR = local recurrence.

Data are percentages unless otherwise indicated.

Results: Transanal

	Mel	lgren 20	000a	Naso	cimbeni 2004		Endreseth 2005			Bentrem 2005		
	TAE	Rad	р	TAE	Rad	р	TAE	Rad	р	TAE	Rad	р
Local Recurrence	18 (5)	0	0.03	5 yr: 6.6 (0.1-12.7) 10 yr: 12.2 (1.9-21.3)	5 yr: 2.8 (0-6.6) 10 yr: 6.2 (0.1-11.9)	0.26	12 (0- 24)	6 (2- 10)	0.01	15	3	0.0001
Distant Metastases				5 yr: 14.2 (5.1-22.3) 10 yr: 20.5 (8-31.4)	5 yr: 6.9 (0.9-12.6) 10 yr: 10.2 (2.7-17.1)	0.13	0	7 (4- 11)	0.52	12	3	0.01
Overall Recurrence	21 (6)	9 (1)	0.54							23 (13- 29)	6 (2- 9)	<0.001
Overall Survival	72 (6)	80 (9)	0.5	5 yr: 72.4 (62.5-83.8) 10 yr: 44.3 (33.2-59.1)	5 yr: 90.4 (83.9-97.4) 10 yr: 72 (62-83.7)	0.008	70 (52- 88)	80 (74- 85)	0.04	89	93	0.26
Disease-Free Survival				5 yr: 66.6 (56.3-78.7) 10 yr: 39.6 (28.9-54.1)	5 yr: 83.6 (75.5-92.5) 10 yr: 69.8 (59.7-81.6)	0.003	64 (46- 82)	77 (71- 83)	0.03			
Disease- Specific Survival				5 yr: 89 (NR)	NR					97	93	0.10
Disease- Specific Mortality	5 (3)	5 (4)	0.36									

Results: Transanal + RT (Series)

Results After Local Excision and Adjuvant Chemoradiotherapy for Rectal Cancer

		No. of		Stage				Survival Five-	Follow-Up
Study	Year	Patients	T1	T2	Т3	LR (%)	DR (%)	Year (%)	(mo)
Hershman <i>et al.</i> ⁶⁶	2000 2001	25 68	19 24	6 36	0	8 27	- 12	92 67	31 60
Le Voyer <i>et al.⁶⁸</i>	1999 1999	35 73	15 33	16 27	4 13	11 15	9 8	91 82	46 51
Chakravarti <i>et al.</i> ⁵³ Fortunato <i>et al.</i> ⁶⁵ Coco <i>et al.</i> ⁶²	1999 1999 1992	47 21 15	14 2 0	33 15 15	0 4 0	10 19 6	- 19 6	74 77 74	51 56 68

LR = local recurrence; DR = distant recurrence.

^a Six-year disease-free survival.

Results: Transanal + RT (Comparative)

Local Recurrence Rates After Local Excision Alone and Local Excision with Adjuvant Radiochemotherapy for T1 and T2

Rectal Cancers

Study		No. of Patients	T1	Tumor	T2 Tumor		
	Year		LE	LE+RT	LE	LE+RT	
Chakravarti et al.53	1999	47	11	0	67	15	
Taylor <i>et al.</i> ³⁵	1998	34	24	50	50	11	
Varma <i>et al.</i> ⁵	1999	23	5	0	46	0	
Lamont <i>et al.</i> 63	2000	48	23	0	0	20	
Gopaul <i>et al.</i> 2	2004	64	11	25	36	9	
Paty <i>et al.</i> ³⁷	2002	125	15	15	30	25	

LE = local excision alone; LE+RT = local excision with adjuvant radiochemotherapy. Data are percentages unless otherwise indicated.

Results: TEM

Table 1 Comparative studies in transanal endoscopic microsurgery (TEM) vs radical resection (RR) or laparoscopic resection (LapR).

Reference	Procedure (n)	Tumour	Follow-up	LR	Other survival outcome	Operative outcomes
[12] Winde (1996)* Level II	TEM (24) AR (26)	50 T1 (G1/2)	TEM 40.9 AR 45.8	4.1% (1/24) TEM 0% (1/26) AR P = NS	Mets: TEM 0% vs AR 3.8% (1/2 No difference in 5 year survival (96% each group)	6) TEM had less complications, decreased 20.8% (5/24) vs 34.5% (9/26), mean operative time (103 min vs 149 min; P < 0.05), decreased blood loss (143 ml vs 745 ml; P < 0.001) decreased daily analgesia requirement (P < 0.0001) and LOS (5.7 days vs 15.4 days; P < 0.001)
[17] Heintz (1998)† Level III	TEM (56) Parks (2) RR (45)	80 low risk T1 23 high risk T1	52° (+/-23) 43 (+/-22)	Low risk T1: LE (2/46) ps RR (1/34) High risk T2: LE (4/1) ps RR (0/11).	TEM 79% vs 81% RR. (P = 0.72	mortality 0% vs 3.8% (2/45).
[18] Langer (2003)† Level III	RR (27) TP (76) TEM-ES(45) TEM-UC(34)	118 Ad 59 T1 (G1/2) 5 other	TEM 21.6 RR 33.7	TEM 10% (2/20) vs 4% (RR)	2 year survival 100% TEM vs 96% RR	TEM decreased morbidity (8% vs 56%). mortality (0% vs 3.7%), operating time (100 min vs 152 min; P = 0.0001), transfusion requirement (9% vs 43%; P = 0.0003) and LOS (8.2 days vs 14.5 days; P = 0.0001)
[20] Lee (2003)† Level III	TEM (74) RR (100)	52 T1 22 T2 100 T1/2N0	TEM 31 RR 35	T1 at 5 year: 4% TEM 0% RR; P = 0.95 T2 at 5 year: 20% TEM 9% RR; P = 0.04	T1 at 5 year DFS TEM 96% vs RR 94% (P = 0.35) T2 at 5 year DFS TEM 81% vs RR 83% (P = 0.12)	TEM decreased complications (4.1% vs 48%)
[13] Lezoche (2005)* Level II	TEM (20) LR (20)	40 T2NO G ₁ /	2 56 (44–67)	LapR 5% (1/20)	Recurrence/metastases probability at 77.6 months: 10% (TEM) vs 12% (LapR) Survival probability at 77.6 months: 95% (TEM) vs 83% (LapR)	TEM associated with decrease operating time (95 min vs 170 min; $P < 0.001$), decreased blood loss (50 ml vs 200 ml; $P < 0.001$) analgesic use (2% vs 20%; $P < 0.001$) and LOS (4.5 days vs 7.5 days; $P < 0.001$)

Results: TEM

Table 3 Gastrointestinal function and quality of life postTEM.

Author	n	Assessment	Method	Result
[25] Cataldo 2005	37	Pre- and 6 weeks	FISI; FIQL	No change in function 6 weeks postTEM
[22] Dafnis 2004	48	Median 22 months	Questionnaire Wexner/Kamm	37% (18/48) decreased continence
[70] Wang 2003	22	Pre-, 2 and 6 weeks 3 months, 1 year	AR manometry Questionnaire	Transient lower squeeze pressures at 2, 6 weeks but recovered at 1 year. Mean continence better at 3 months ps preTEM (NS)
[29] Kennedy 2002	13	Pre-, 3 and 6 weeks	AR manometry PNTML Electrosensitivity Interview	Decrease sphincter tone at 6 weeks correlates with duration of procedure > 2 h. No change in continence
[26] Herman 2001	33	Pre-, 3 weeks, 6 months	AR manometry ISS	Decrease ISS at 3 weeks. ISS at 6 months better than pre- (NS). Suggested risk factors for anorectal dysfunction postTEM was postoperative internal anal sphincter defects, low preoperative resting anal pressure, disturbed anorectal co-ordination, > 50% circumferential excision and full thickness excision in this study
[30] Kreis 1996	42	Pre-, 3 months, 1 year	AR manometry Interview	Decreased squeeze pressure and continence at 3 months with full recovery at 1 year
[28] Banerjee 1996	36	Pre- and 12 months	AR manometry Questionnaire	Decreased resting pressures but not continence
[27] Hemmingway 1996	6	Pre-, 48 h, 6 weeks	AR manometry Interview	Decreased resting and squeeze pressure to 75% and 653% preop levels at 48 h. All pressures normal at 6 weeks. No incontinence

FISI, Faecal Incontinence Severity Index; FIQL, Faecal Incontinence Quality of Life; PNTML, Pudendal Nerve Terminal Motor Latency; Pre-, preoperative; ISS, Incontinence Severity Index; AR manometry, Anorectal manometry +/- physiology.

Salvage Surgery for Recurrence

- Friel et al. Dis Colon Rectum 2002
 - 90% of recurrence post local excision are within mesorectal planes
 - Inadequate local control
 - Pathologic stage of recurrent tumour higher than primary in 93%
- Baron et al. Dis Colon Rectum 1995
 - 155 pts initial local excision
 - 21 immediate APR for high risk features vs 21 APR for local recurrence
 - DFS 95% vs. 56% (p<0.005)

Summary

- Conventional transanal excision and TEM are alternatives to radical resection for early rectal cancer
- Recurrence rates are significantly higher for local excision
- Radiotherapy appears to have benefit beyond simple excision, but is not equivalent to radical surgery
- TEM may have better oncologic outcomes than transanal excision
- Salvage therapy for recurrence after local excision is not always successful
- Local excision for rectal cancer may be the appropriate choice depending on pathologic and patient factors