Prone vs Lithotomy for APR

Terry Phang

St. Paul's Hospital University of British Columbia

Identified Problem – Difficulty achieving negative CRM for distal third rectal location

•Absence of mesorectal margin "cushion"

•Difficult technical dissection due to lack of planes

•High positive radial margin rate (~36%) for distal third rectal location in BC

BC rectal margins

-

Upper third (11-15 cm) Mid third (6-10 cm) Distal third (1-5 cm) 15%

12.5%

36.4%

Effect of rectal third location on *local recurrence* in BC

		Hazard Ratio	95% Confidence Limits	P-value
Location	Upper	1.00		
	Mid	1.45	0.59-3.57	0.42
	Distal	5.08	1.62-15.96	0.01

Universal Problem – Distal Third Location ... AR **Dutch TME trial** APR **Positive margins** 10.7% 30.4% 2.5% 13.7% Perforations

Survival 57.6% 38.5%

Nagtegaal et al. J Clin Oncol 2005; 23:9257

APR - Conventional vs Extralevator (cylindrical)

Adapted from Holm et al. Br J Surg 2007; 94: 232

APR specimens - Conventional vs extralevator

Holm et al. Br J Surg 2007; 94: 232

Stockholm - Extralevator APR

Case series,	ypT0	ypT3	ypT4
2007	(n=2)	(n=20)	(n=6)
N = 28			
Perforation	0	1	0
Margin pos	0	0	2
1.5 yr local	0	0	2
recurrence			(7%)
			- 2007. 04. 222

Holm et al. Br J Surg 2007; 94: 232

Warsaw – Anterior Resection vs Extralevator APR

Case series, 2007	AR N=154	APR N=43
5-yr local recurrence	5.8%	4.7%
5-yr survival	57.1%	60.4%

Bebenek et al. Eur J Surg Oncol 2007; 33:320

Stockholm + Leeds : Conventional vs Extralevator APR

Case	series
1997	-2007

Conventional N = 101

Extralevator N = 27

Perforation22.8%3.7%

P < 0.025

CRM pos 40.5% 14.8% P < 0.0001

West, J Clin Oncol 2008; 26: 2517

Conventional

Extralevator, Leeds

Extralevator, Valencia

Dresden, Germany: Conventional vs Extralevator APR

Case series	Conventional	Extralevator
1997 - 2010	N = 46	N = 28
Perforation	15.2%	0%
P < 0.04		

CRM pos P = 0.51

0%

4.9%

Stelzner, Int J Colorectal Dis 2011; 26: 919

Leeds + 11 European centres: Conventional vs Extralevator APR

Case series	Conventional	Extralevator
2008	N = 124	N = 176

Perforation	28.2%	8.2%

P < 0.025

CRM pos P < 0.0001 49.6%

20.3%

West, Br J Surg 2010; 97: 588

Cleveland Clinic: Lithotomy vs Prone APR

Case series	Lithotomy	Prone
1997 - 2007	N = 87	N = 81

Perforation	1.2%	0%
P – 1		

 CRM pos
 8.5%

 P = 0.17
 6.5%

De Campos-Lobato, DCR 2011; 54: 8

2.3%

Rochester, NY : Lithotomy vs Prone APR Case series Lithotomy Prone 1999 - 2008 N = 63N = 58 Perforation 5.0% 3.4% P = 0.5527.0% 27.6% CRM pos P = 0.5

Tayyab, DCR 2012; 55: 3

Toronto Mt Sinai, case series1997-2006: Conventional lithothomy APR

- 115 patients
- Perforation: 6.1%
- CMR pos
 - Anterior: 31.6%
 - Lateral: 13%
 - Posterior: 10%
- LR 10.6%

Messenger, DCR 2011; 54: 793

Beijing RCT: Conventional vs Extralevator APR

. RCT Lithotomy Prone N = 322008-2010 N = 355 (16%) 2 (6%) Perforation P < 0.2469(28%)2 (6%) CRM pos P < 0.0136 (19%) 1 (3%) Local recurrence (29 months) P < 0.048

Han, Am J Surg 2012; 204: 274

Summary - Extralevator APR (prone)

- Wider lateral margin clearance at levators
- Possibly
 - Less perforation (especially anterior)
 - Decreased pos CMR (especially anterior)
 - Decreased local recurrence

Summary: Prone vs Lithotomy

- No definitive large RCT as yet
- Europeans favouring prone extralevator APR
- North Americans defending lithotomy

Reconstruction Options

– Rotation / advancement flaps

- Gluteus, gracilis, rectus
- Free flaps
 - Latissimus
- Mesh
 - Prolene / PTFE (Goretex)
 - Biologic
 - Vicryl

Reconstruction - Gluteus maximus flaps

Holm et al. Br J Surg 2007; 94: 232

Gluteal Advancement Flaps

Gracilis rotation flap

Rectus abdominus rotation flap

Personal observations (no data)

• Prone

- Pros: Improved visibility, easier retraction by assistant
- Cons: Unable to perform rectus or gracilis transfer
 - Use biologic mesh <u>+</u> gluteus advancement

Prone vs Lithotomy: Recommendation

• TRY PRONE !!!