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A B S T R A C T

Purpose
An estimated 4% to 7% of the population will develop a clinically significant thyroid nodule
during their lifetime. In many cases, preoperative diagnoses by needle biopsy are inconclusive.
Thus, there is a clear need for improved diagnostic tests to distinguish malignant from benign
thyroid tumors. The recent development of high-throughput molecular analytic techniques
should allow the rapid evaluation of new diagnostic markers. However, researchers are faced
with an overwhelming number of potential markers from numerous thyroid cancer expression
profiling studies.

Materials and Methods
To address this challenge, we have carried out a comprehensive meta-review of thyroid cancer
biomarkers from 21 published studies. A gene ranking system that considers the number of
comparisons in agreement, total number of samples, average fold-change and direction of change
was devised.

Results
We have observed that genes are consistently reported by multiple studies at a highly significant
rate (P � .05). Comparison with a meta-analysis of studies reprocessed from raw data showed
strong concordance with our method.

Conclusion
Our approach represents a useful method for identifying consistent gene expression markers
when raw data are unavailable. A review of the top 12 candidates revealed well known thyroid
cancer markers such as MET, TFF3, SERPINA1, TIMP1, FN1, and TPO as well as relatively novel
or uncharacterized genes such as TGFA, QPCT, CRABP1, FCGBP, EPS8 and PROS1. These
candidates should help to develop a panel of markers with sufficient sensitivity and specificity for
the diagnosis of thyroid tumors in a clinical setting.

J Clin Oncol 24:5043-5051. © 2006 by American Society of Clinical Oncology

INTRODUCTION

Thyroid nodules are extremely common, being pal-
pable in 4% to 7% of the North American adult
population, with new nodules detected at a yearly
rate of 0.1%.1,2 Currently, fine-needle aspiration bi-
opsy (FNAB) represents the most important initial
test for diagnosing malignancy. The result of the
FNAB cytology can be classified as benign (70% of
cases), malignant (5% to 10%), indeterminate or
suspicious (10% to 20%), or nondiagnostic (10% to
15%).3-5 Although nondiagnostic FNABs can be re-
peated, the indeterminate or suspicious group pre-
sents a dilemma for the clinician. In a recent report
from our center on 80 patients who underwent thy-
roid resection for an indeterminate FNAB diagnosis
of follicular neoplasm (FN), only 20% were con-

firmed as malignant.6 Thus, many patients undergo
thyroid surgery for nodular disease that is eventually
diagnosed as benign disease.

Given the diagnostic limitations of FNAB when
applied to thyroid tumors, multiple investigators
have carried out expression profiling studies with
hopes of identifying new diagnostic tools. Such anal-
yses attempt to identify differentially expressed
genes with an important role in disease development
or progression using large-scale transcript-level
expression profiling technologies such as cDNA mi-
croarrays,7 oligonucleotide arrays8 and Serial Anal-
ysis of Gene Expression (SAGE).9 Typically, dozens
or hundreds of genes are identified, many of which
are expected to be false positives, and only a small
fraction useful as diagnostic/prognostic markers or
therapeutic targets.
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A logical approach to distinguishing important genes from spu-
rious genes, given a large number of candidate gene lists, is to search
for the intersection of genes identified in multiple independent stud-
ies.10 It is expected that biologically relevant genes will be over-
represented and system-specific spurious genes under-represented.
As large numbers of cancer profiling studies have become available,
the identification of such intersections has become increasingly
popular10-12 but none have investigated thyroid cancer specifically.
Such studies, although conceptually simple, face a number of tech-
nical challenges such as inconsistent gene identifiers, inaccessible
data, and uncertain significance of results. Here, we attempt to
overcome these challenges.

Our approach involves a vote-counting strategy based on the
number of studies reporting a gene as differentially expressed and
further ranking based on total sample size and average fold-change.
Similar strategies have been used to show that gene pairs consistently
coexpressed in multiple platforms13 or data sets14 are more likely to
share a common biologic process. Our objective was to use validation
from multiple expression profiling data sets to identify high-
confidence, differentially expressed genes as potential biomarkers for
thyroid cancer. We present a novel meta-review method for ranking
genes on the basis of published evidence, successfully validate our
method against a more traditional meta-analysis approach, and
provide a large number of highly significant multistudy genes. Such
markers should prove a useful resource for further study by high-
throughput molecular analytic techniques.

MATERIALS AND METHODS

Data Collection and Curation

Published lists of differentially expressed genes were processed to
obtain the following information (wherever possible): unique identifier
(probe/tag/accession); gene name/description; gene symbol; comparison
conditions; sample numbers for each condition; fold-change; direction of
change; and PubMed ID. All abbreviations used for sample descriptions
are defined in Table 1.

Gene Mapping

The National Center for Biotechnology Information’s Entrez gene iden-
tifier was chosen as the common target identifier for the overlap analysis.
SAGE tags were mapped to transcripts by the first position (3�-most NlaIII
anchoring enzyme recognition site), sense-strand tag predicted from Refseq15

or MGC16 sequences and then mapped to Entrez using the DiscoverySpace
software package (Varhol et al, unpublished data; http://www.bcgsc.ca/
discoveryspace/). Affymetrix probes were mapped using Affymetrix annota-
tion files (Santa Clara, CA). Clone accession ids were mapped using the
DAVID Resource (http://david.abcc.ncifcrf.gov/).17 If no tag, probe, or accession
ID was available, the entry was mapped using gene symbol or gene synonyms.

Ranking

Each published study consists of one or more comparisons between a
pair of conditions (eg, papillary thyroid carcinoma [PTC] v normal) resulting
in a list of differentially expressed genes. A method of ranking potential mo-
lecular markers was devised for each comparison group. A comparison group
refers to a list of comparisons that address a common question of interest. For
example, to identify markers that consistently distinguish cancer from non-
cancer (normal or benign) we would analyze all the comparisons that contrast
cancer samples (eg, PTC, follicular thyroid carcinoma [FTC], anaplastic thy-
roid cancer [ATC], etc) against noncancer samples (eg, normal, goiter [GT],
follicular adenoma [FA], etc).

Genes were ranked according to several criteria in the following order of
importance: (1) number of comparisons in agreement (ie, listing the same

gene as differentially expressed and with a consistent direction of change); (2)
total number of samples for comparisons in agreement; and (3) average
fold-change reported for comparisons in agreement. Total sample size was
considered more important than average fold-change because many studies
do not report a fold-change. Therefore, average fold-change was based solely
on the subset of studies for which a fold-change value was available.

Assessment of Significance

Significance of the observed level of overlap between studies for each
comparison subset was assessed by Monte Carlo simulation using custom Perl
scripts. Where possible, the actual gene lists produced by mapping each ex-
pression technology to Entrez gene ID were utilized. For studies with custom
arrays,18-21 the appropriate number of genes was chosen from the combined
gene list of all other platforms. For SAGE, three thyroid libraries (normal,
benign, and carcinoma) from the Cancer Genome Anatomy Project22 were
used to create a realistic total tag set and then mapped to Entrez as noted
herein. Once total gene lists were created for each platform type, we randomly
created gene subsets of the same size observed in our review of the literature.
For example, in the cancer-versus-noncancer analysis, one comparison
(PTC v normal) identified 24 up- and 27 downregulated genes with the
Affymetrix HG-U95A platform.23 In our simulation, we would randomly
select and label 24 “up” and 27 “down” genes from the Affymetrix HG-
U95A total gene list. A similar random selection was performed for all
other comparisons in the cancer-versus-noncancer subset using the appro-
priate total gene lists. Finally, the amount of overlap between comparisons
was tallied as in the real analysis. This entire process was repeated 10,000
times to produce a distribution of overlap results from the random simu-
lations. A P value was then estimated by comparing the actual overlap
result to the distribution. A result was considered significant at P � .05.

Meta-Analysis of Affymetrix Data

The method presented in the preceding section makes use of re-
ported lists of differentially expressed genes from published literature. An
obvious disadvantage of this approach is that each publication may make use
of different methods to ascertain differential expression (eg, scaling, filtering,
normalization, significance thresholds, P value estimation, multiple testing
corrections, etc). Collecting and reanalyzing 21 sets of raw data from 10
different platforms in a consistent manner would be an immense task and
most likely impossible, because many raw data sets are unavailable. However,

Table 1. List of Abbreviations for Thyroid Samples

Abbreviation Sample Description

ACL Anaplastic thyroid cancer cell line
AFTN Autonomously functioning thyroid nodules
ATC Anaplastic thyroid cancer
CTN Cold thyroid nodule
DTC Differentiated thyroid cancer
FA Follicular adenoma
FCL Follicular carcinoma cell line
FTC Follicular thyroid carcinoma
FVPTC Follicular variant papillary thyroid carcinoma
GT Goiter
HCC Hurthle cell carcinoma
HN Hyperplastic nodule
M Metastatic
MACL Anaplastic thyroid cancer cell line with

metastatic capacity
MTC Medullary thyroid carcinoma
Norm Normal
PCL Papillary carcinoma cell line
PTC Papillary thyroid carcinoma
TCVPTC Tall-cell variant papillary thyroid carcinoma
UCL Undifferentiated carcinoma cell line
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to assess our method, we did reanalyze a subset of data from raw image files
using a standard methodology. Five Affymetrix comparisons (three PTC v
normal; one FTC v normal; and one FTC v FA) were reprocessed using the
DChip software, analyzed for overlapping genes as above, and the results
compared to the cancer-versus-noncancer comparison analysis for concor-
dance using the LOLA tool.11

Additional information on methods appears in the Appendix (online only).

RESULTS

A total of 34 comparisons were available from 21 studies, utilizing 10
different expression platforms (Table 2). Of the 1,785 genes reported
as differentially expressed in these studies (827 up- and 958 down-
regulated), 1,562 could be mapped to an Entrez gene identifier (723

Table 2. Thyroid Cancer Profiling Studies Included in Analysis

Study Platform

No. of
Genes/

Features

Comparison Features Mapped Genes

Condition
1

No. of
Samples

Condition
2

No. of
Samples

Up-
regulated

Down-
regulated

Up-
regulated

Down-
regulated

Aldred et al, 200451 Affymetrix HG-U95A 12,558 FTC 9 PTC 6 0 142 0 126
Norm 13

PTC 6 FTC 9 68 0 59 0
Norm 13

Arnaldi et al, 200518 Custom cDNA array 1,807 FCL 1 Norm 1 9 20 9 17
FCL 1 Norm 1 3 6 3 3
PCL 1
UCL 1
PCL 1 Norm 1 1 8 1 8
UCL 1 Norm 1 1 7 1 6

Barden et al, 200349 Affymetrix HG-U95A 12,558 FTC 9 FA 10 59 45 53 42
Cerutti et al, 200452 SAGE NA FA 1 FTC 1 5 0 4 0

Norm 1
FTC 1 FA 1 12 0 9 0

Norm 1
Chen et al, 200150 Atlas human cDNA array

(Clontech)
588 M 1 FTC 1 18 40 17 40

Chevillard et al, 200419 Custom cDNA array 5,760 FTC 3 FA 4 12 31 12 30
FVPTC 3 PTC 2 123 16 123 16

Eszlinger et al, 200153 Atlas human cDNA array
(Clontech)

588 AFTN 3 Norm 6 0 16 0 12

CTN 3
Finley et al, 200429 Affymetrix HG-U95A 12,558 PTC 7 FA 14 48 85 48 82

FVPTC 7 HN 7
Finley et al, 200446 Affymetrix HG-U95A 12,558 FTC 9 FA 16 50 55 49 52

PTC 11 HN 10

FVPTC 13
Giordano et al, 200548 Affymetrix HG-U133A 22,283 PTC 51 Norm 4 90 151 69 122
Hawthorne et al, 200431 Affymetrix HG-U95A 12,558 GT 6 Norm 6 1 7 0 6

PTC 8 GT 6 10 28 8 18
PTC 8 Norm 8 4 4 3 3

Huang et al, 200123 Affymetrix HG-U95A 12,558 PTC 8 Norm 8 24 27 24 27
Jarzab et al, 200543 Affymetrix HG-U133A 22,283 PTC 16 Norm 16 75 27 71 26
Mazzanti et al, 200455 Hs-UniGem2 human cDNA array 9,984 PTC 17 FA 16 5 41 4 35

FVPTC 15 HN 15
Onda et al, 200420 Amersham custom cDNA array 27,648 ACL 11 Norm 10 31 56 27 54

ATC 10
Pauws et al, 200457 SAGE NA FVPTC 1 Norm 1 33 9 14 4
Takano et al, 200056 SAGE NA FTC 1 ATC 1 3 10 1 7

FTC 1 FA 1 4 1 2 1
Norm 1 FA 1 6 0 2 0
PTC 1 ATC 1 2 11 0 8
PTC 1 FA 1 7 0 2 0
PTC 1 FTC 1 2 1 1 1

Wasenius et al, 200335 Atlas human cancer cDNA array
(cancer 1.2 array)

1,176 PTC 18 Norm 3 12 9 12 8

Weber et al, 200547 Affymetrix HG-U133A 22,283 FA 12 FTC 12 12 84 12 65
Yano et al, 200421 Amersham custom cDNA array 3,968 PTC 7 Norm 7 54 0 41 0
Zou et al, 200454 Atlas human cancer cDNA array

(cancer 1.2 array)
1,176 MACL 1 ACL 1 43 21 42 20

21 studies 10 platforms 34 comparisons (473 samples) 827 958 723 839

NOTE. Table 1 contains definitions of thyroid sample abbreviations.
Abbreviations: Clontech, Clontech Laboratories Inc (Mountain View, CA); Amersham, Amersham Biosciences (Piscataway, NJ); Affymetrix, Affymetrix Inc (Santa

Clara, CA); SAGE, Serial Analysis of Gene Expression; NA, not applicable.
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up- and 839 downregulated). In all overlap analysis groups considered
except for one, we identified genes that were reported in multiple
studies with a level of overlap found to be significant by Monte Carlo
simulation (P � .05; Table 3). The cancer-versus-noncancer group is
provided as an example. In this case, a total of 755 genes were reported
from 21 comparisons, and of these, 107 genes were reported more
than once with consistent fold-change direction (Fig 1). In some cases
(MET, TFF3, and SERPINA1), genes were independently reported as
many as six times with a consistent fold-change direction. Only 18
genes were found to be reported in multiple studies with inconsistent
fold-change. This in itself is an encouraging result. Given that approx-
imately equal numbers of genes were reported as up- versus down-
regulated (723 up, 839 down) we might expect that multistudy genes
with inconsistent fold-change direction would be as common as
(or more common than) genes with consistent direction (under
random expectation). Instead, we see that in most cases (85.6%),
studies that report the same gene agree on the direction, even for
large numbers of studies.

The total amount of overlap observed was assessed by Monte
Carlo simulation and found to be highly significant (P � .0001; 10,000
permutations). In the simulation, an average of 18.2 (95% CI, 18.12 to
18.28) genes were observed with an overlap of two (same gene identi-
fied in two comparisons) compared with 68 in the actual data. For
overlap of three, only 0.3 (95% CI, 0.29 to 0.31) genes were observed
on average compared with 27 for real data. In 10,000 permutations,
the simulated data never produced an overlap greater than three,
whereas real data identified 12 genes with overlap of four, five, or six.
The probability of observing one or more genes with an overlap of two
or more was P � .99. For overlap of three or more P � .037, and for
four or more P � .0001. The total number of genes with overlap of two
was still highly significant, but we expect at least some false positives to
occur by chance. Therefore, we have provided only those genes (top

39) with overlap of three or more and consider those with four or
more to be the most reliable (Table 4).

If the cancer-versus-noncancer group is broken into two catego-
ries, cancer versus normal and cancer versus benign, we find that most
of the top genes were found in both types of comparisons. A small
number of genes were found in only one of the two categories.

A comparison of genes with multistudy evidence based on pub-
lished lists versus the smaller subset reanalyzed from raw Affymetrix

Table 3. Comparison Groups Analyzed for Overlap

Overlap Analysis Group Condition Set 1 Condition Set 2
No. of

Comparisons

Genes

PTotal No.

No. With
Multistudy

Confirmation

Cancer v noncancer ACL, ATC, FCL, FTC, FVPTC, HCC, M,
MACL, PCL, PTC, TCVPTC, UCL

AFTN, CTN, FA, GT, HN, Norm 21 755 107 � .0001

Cancer v normal ACL, ATC, FCL, FTC, FVPTC, HCC, M,
MACL, PCL, PTC, TCVPTC, UCL

Norm 12 478 53 � .0001

Cancer v benign ACL, ATC, FCL, FTC, FVPTC, HCC, M,
MACL, PCL, PTC, TCVPTC, UCL

AFTN, CTN, FA, GT, HN 8 332 38 � .0001

Normal v benign Norm AFTN, CTN, FA, GT, HN 3 19 1 0.0113
Papillary cancer v noncancer FVPTC, PCL, PTC, TCVPTC AFTN, CTN, FA, GT, HN, Norm 12 503 82 � .0001
Papillary cancer v normal FVPTC, PCL, PTC, TCVPTC Norm 8 369 49 � .0001
Papillary cancer v benign FVPTC, PCL, PTC, TCVPTC AFTN, CTN, FA, GT, HN 4 183 13 � .0001
Papillary cancer v other FVPTC, PCL, PTC, TCVPTC Any other 15 528 107 � .0001
FVPTC v other FVPTC Any other 2 157 0 NA
FTC v FA FTC FA 6 222 3 .0455
Follicular cancer v other FTC, FCL Any other 10 403 15 .0003
Aggressive cancer v other ACL, ATC, M, MACL Any other 4 145 4 .0402
Anaplastic cancer v other ACL, ATC, MACL Any other 3 91 6 � .0001
Cancer v noncancer (reanalyzed

Affymetrix subset)
PTC, FTC Norm, FA 5 1,317 179 � .0001

NOTE. Table 1 contains definitions of thyroid sample abbreviations.
Abbreviation: Affymetrix, Affymetrix Inc (Santa Clara, CA).
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Fig 1. Overlap analysis results for cancer-versus-noncancer group compared
with random simulation. Values shown for random permutations are mean values
for all permutations in the Monte Carlo simulation. Error bars were not included
because SE or 95% CIs were too small to visualize.
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Table 4. Cancer Versus Noncancer (normal/benign) Overlap Analysis Results

Gene Description

No. of Comparisons No. of Samples FC

ReferencesUpregulated Downregulated With FC Total With FC Mean Range

MET‡ Met proto-oncogene
(hepatocyte growth
factor receptor)

6 0 4 202 162 4.54 2.60 to 6.60 23,35,43,46,48,49

TFF3‡ Trefoil factor 3 (intestinal) 0 6 4 196 146 �22.04 �63.55 to �3.80 20,23,31,46,48,49
SERPINA1‡ Serine (or cysteine)

proteinase inhibitor, clade
A (alpha-1 antiproteinase,
antitrypsin), member 1

6 0 6 192 192 15.84 5.00 to 27.64 23,31,43,46,48

EPS8‡ Epidermal growth factor
receptor pathway
substrate 8

5 0 5 186 186 3.14 2.10 to 3.80 23,43,46-48

TIMP1‡ Tissue inhibitor of
metalloproteinase 1
(erythroid potentiating
activity, collagenase
inhibitor)

5 0 5 142 142 5.37 3.20 to 10.31 31,35,43,46

TGFA‡ Transforming growth factor,
alpha

4 0 3 165 146 6.18 3.20 to 7.91 43,46,48,49

QPCT‡ Glutaminyl-peptide
cyclotransferase
(glutaminyl cyclase)

4 0 4 153 153 7.31 3.40 to 11.67 19,43,46,48

PROS1‡ Protein S (alpha) 4 0 3 149 130 5.76 3.40 to 7.39 23,46,48,49
CRABP1‡ Cellular retinoic acid binding

protein 1
0 4 4 146 146 �11.54 �24.45 to �2.20 23,31,46,48

FN1‡ Fibronectin 1 4 0 4 128 128 7.67 5.20 to 10.30 23,35,43,46
FCGBP‡ Fc fragment of IgG binding

protein
0 4 3 108 89 �3.20 �3.30 to �3.10 31,46,49

TPO‡ Thyroid peroxidase 0 4 3 91 89 �6.25 �8.60 to �2.70 23,31,46,57
LRP4‡ Low-density lipoprotein

receptor-related protein 4
3 0 3 146 146 14.47 6.40 to 19.43 43,46,48

PSD3‡ Pleckstrin and Sec7 domain
containing 3

3 0 3 146 146 3.99 2.70 to 5.50 43,46,48

C11orf8‡ Chromosome 11 open
reading frame 8

0 3 3 134 134 �7.04 �12.49 to �2.25 23,48,55

FABP4‡ Fatty acid binding protein 4,
adipocyte

0 3 3 130 130 �8.55 �15.36 to �4.90 23,46,48

RGS16‡ Regulator of G-protein
signaling 16

0 3 3 130 130 �4.01 �6.75 to �2.00 23,46,48

SDC4‡ Syndecan 4 (amphiglycan,
ryudocan)

3 0 3 130 130 3.32 2.30 to 4.17 23,46,48

COL9A3‡ Collagen, type IX, alpha 3 0 3 3 128 128 �13.97 �27.39 to �4.50 31,46,48
HBB� Hemoglobin, beta 0 3 2 118 87 �7.58 �11.39 to �3.77 20,43,48
ETV5‡ ets variant gene 5 (ets-

related molecule)
3 0 3 111 111 3.60 2.98 to 4.38 43,47,48

CD44‡ CD44 antigen (homing
function and Indian blood
group system)

3 0 3 111 111 3.12 2.24 to 4.51 43,47,48

FCGRT‡ Fc fragment of IgG,
receptor, transporter,
alpha

0 3 1 109 59 �2.8 �2.80 to �2.80 20,46,49

CITED1‡ Cbp/p300-interacting
transactivator, with Glu/
Asp-rich carboxy-terminal
domain, 1

3 0 3 107 107 18.73 7.90 to 26.90 23,43,46

KRT19‡ Keratin 19 3 0 3 107 107 6.55 4.00 to 9.35 23,43,46
GPR51‡ G protein-coupled receptor

51
3 0 3 107 107 5.67 3.30 to 8.26 31,43,46

LGALS3‡ Lectin, galactoside-binding,
soluble, 3 (galectin 3)

3 0 3 107 107 3.7 3.50 to 3.80 23,43,46

DPP4� Dipeptidylpeptidase 4
(CD26, adenosine
deaminase complexing
protein 2)

3 0 3 103 103 46.19 8.20 to 115.76 23,43,48

TUSC3� Tumor suppressor
candidate 3

3 0 3 103 103 5.84 2.43 to 7.70 23,43,48

P4HA2� Procollagen-proline, 2-
oxoglutarate 4-
dioxygenase (proline 4-
hydroxylase), alpha
polypeptide II

3 0 3 103 103 3.75 2.93 to 4.50 23,43,48

CCND1� cyclin D1 (PRAD1: parathyroid
adenomatosis 1)

3 0 2 101 87 2.93 2.49 to 3.37 21,43,48

DIO1‡ Deiodinase, iodothyronine,
type I

0 3 2 94 75 �3.75 �5.20 to �2.30 23,46,49

ITPR1‡ Inositol 1,4,5-triphosphate
receptor, type 1

0 3 2 94 75 �2.6 �2.70 to �2.50 23,46,49

(continued on following page)
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microarray data showed a highly significant level of agreement
(P � .0001). The 107 cancer-versus-noncancer multistudy genes
showed a concordance of 0.177 (95% CI, 0.129 to 0.225) with the 179
multistudy genes identified from the reanalyzed Affymetrix subset
(Fig 2). In total, there were 43 genes identified by both methods. Given
that the two lists of genes were produced by very different subsets of
data, in addition to the potential differences in processing, this was an
encouraging result. However, it does appear that reprocessing the
microarray data in a consistent manner would certainly alter the
results and would likely increase the total number of multistudy genes.

Additional information on results appears in the Appendix (on-
line only).

DISCUSSION

A common criticism of expression profiling studies is a lack of agree-
ment between studies. However, by applying our meta-review
method to a large number of published studies, we observe that many

genes are consistently reported at a highly significant rate. These genes
may represent real biologic effects that, through repeated efforts, have
overcome the issues of noise and error typically associated with such
experiments. A comparison of our meta-review method (using pub-
lished gene lists) to a meta-analysis of a smaller subset of studies (for
which raw data were available) showed a strong level of concordance.
Thus, we believe our approach represents a useful alternative for
identifying consistent gene expression markers when raw data are
unavailable (as is generally the case). However, a limitation of our
method resulting from unavailability of raw data is that we are unable
to assign a measure of confidence at the gene level. We can identify
consistently reported genes and rank them according to simple criteria
such as total sample size and average fold-change, but we can not
calculate a true combined fold-change or P value. In order for more
powerful meta-analysis methods to be applied researchers must pro-
vide access to their raw data. Also, we remind the reader that although
we have focused on the cancer-versus-noncancer comparisons, a large
number of other comparison groups were analyzed (Table 3).

As a means of further assessing our results, we review the top 12
cancer-versus-noncancer candidates to identify which markers have
been previously confirmed as differentially expressed or having diag-
nostic/prognostic utility in thyroid cancer (Table 5). In total, 10 of 12
markers have been confirmed at the RNA level and six of these have
gone on to be validated at the protein level. For discussion purposes we
have broken the genes into two categories, well-characterized and
novel or uncharacterized. We also compare our results to a previous
review of promising thyroid biomarkers.

We defined well-characterized genes as those that have been
validated in more than one follow-up study and at both the RNA and
protein level, such as MET, TFF3, SERPINA1, TIMP1, FN1, and TPO.
Several studies have implicated MET protein expression in thyroid
cancer as both a diagnostic tool24-28 and prognostic tool.24,26-28 In-
creased MET expression has been associated with higher risk for
metastasis26 and recurrence in PTC26,27 and negative prognosis in
FTC.28 However, in another study, decreased MET was shown to be an
effective predictor of distant metastases among PTC cases.24 Although
no reports have evaluated TFF3 at the protein level, numerous studies
have suggested TFF3 as a useful biomarker at the RNA level.23,29-33 A
two-gene panel of SFTPB and TFF3 was shown to correctly diagnose

Table 4. Cancer Versus Noncancer (normal/benign) Overlap Analysis Results (continued)

Gene Description

No. of Comparisons No. of Samples FC

ReferencesUpregulated Downregulated With FC Total With FC Mean Range

MT1F† Metallothionein 1F
(functional)

0 3 2 92 73 �2.85 �2.91 to �2.80 31,46,49

PHLDA2‡ Pleckstrin homology-like
domain, family A,
member 2

3 0 3 89 89 8.02 2.50 to 15.96 23,31,46

MT1G‡ Metallothionein 1G 0 3 3 89 89 �5.55 �8.60 to �2.30 23,31,46
ID4† Inhibitor of DNA binding 4,

dominant negative helix-
loop-helix protein

0 3 2 89 70 �3.64 �5.00 to �2.29 19,49,55

DUSP6‡ Dual-specificity
phosphatase 6

3 0 3 72 72 4.5 3.68 to 5.22 23,43,47

HBA2� Hemoglobin, alpha 2 0 3 3 69 69 �3.5 �4.72 to �2.38 23,35,43

Abbreviation: FC, fold change.
�Cancer v normal.
†Cancer v benign.
‡Both.

64 43 136

All published
gene lists

Affy subset
re-analyzed

Fig 2. A comparison of cancer-versus-noncancer genes identified with multi-
study evidence based on all published lists (our meta-review method) versus
genes identified by a smaller subset of studies reanalyzed from raw microarray
data. Affy, Affymetrix, Santa Clara, CA.
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PTC with a sensitivity of 88.9%, specificity of 96.7%, and accuracy of
94.9%30 and TFF3/LGALS3 mRNA ratio was shown to distinguish FA
from FTC with sensitivity and specificity of 80.0% and 91.5% respec-
tively.33 An antibody study of SERPINA1 reported immunoreactivity
in nine of 10 PTCs with no staining in the adjacent normal thyroid
tissues.34 TIMP1 upregulation was confirmed by immunohistochem-
istry (IHC) with positive immunostaining in 68% of PTC cases and
none of the normal cases.35 Another IHC study of TIMP1 for 86 PTC
specimens showed increased immunoreactivity in the tumor regions
versus nontumor regions in 92% cases and significant correlations
with unfavorable prognostic variables.36 FN1 has been proposed as a
useful reverse transcriptase (RT-) polymerase chain reaction (PCR)
marker of differentiated thyroid cancer (DTC)37 and an important
modulator of thyroid cell adhesiveness and neoplastic cell growth.38

An IHC study of 85 FTCs and 21 FAs reported that coexpression of
FN1 and GAL3 or FN1 and HBME1 was restricted to cancer, although
their concurrent absence was highly specific for benign lesions
(96%).39 A large number of studies have investigated TPO as a marker
for thyroid carcinoma. Lazar et al40 found that higher thyroid cancer
stage was associated with lower TPO mRNA expression. Segev et al41

reviewed five IHC studies involving nearly 400 follicular lesions and
found that 93% of FAs and 97% of FTCs were accurately diagnosed by
TPO antibody staining. Studies using FNAB samples, however, have
proved less promising with false-positive rates as high as 32%.41 For
the most part, the six genes reviewed above appear promising as
thyroid cancer candidates and suggest our meta-analysis method is
producing reasonable results.

For four genes (TGFA, QPCT, CRABP1, and FCGBP) we could
find only a single follow-up study or validation experiment confirm-

ing their potential importance in thyroid cancer. Bergstrom et al42

suggest that increased expression of TGFA may be responsible for
aberrant activation of epidermal growth factor receptor and ulti-
mately an overexpression and activation of MET. Jarzab et al43 built a
classifier capable of discriminating between PTC and nonmalignant
samples in 90% of cases. This classifier included QPCT (along with 18
other genes). QPCT was considered a novel gene and was validated by
quantitative PCR in that study, but has been studied little further since.
CRABP1 downregulation was confirmed by RT-PCR (in one of the
original microarray studies),31 and another study reported that hyper-
methylation of promoter CpG islands for CRABP1 in PTC may ex-
plain the reduced expression.44 Differential expression of FCGBP was
confirmed in a separate study by restriction-mediated differential
display and real-time RT-PCR.45

For two genes (EPS8 and PROS1) we could find no confirmation
beyond the initial microarray experiment. In our meta-analysis, five
studies identified EPS823,43,46-48 and four identified PROS123,46,48,49 as
upregulated in comparisons of cancer with noncancer. And yet, to our
knowledge, no follow-up study has confirmed either of these genes
(even at the RNA level). It is unclear whether genes such as EPS8 and
PROS1 have not been further validated because they are false
positives or simply because they have not yet been chosen for
further study. These genes and the other less characterized candi-
dates may represent novel diagnostic markers for thyroid cancer
and warrant further investigation.

Comparison to a previous meta-review by Segev et al41 of mainly
single-gene, protein-level thyroid cancer studies found that four of
their 12 markers identified as promising preoperative diagnostic
markers were identified as high-ranking candidates (top 30) in our
meta-analysis (TPO, CD44, KRT19, and LGALS3). Two of their can-
didates were either not represented (HBME-1) or can not be reliably
assayed by the microarray platforms (RET/PTC rearrangements).
However, six other promising markers (CDKN1B, TERT, CP/LTF,
DLGAP4, HMGA1, and PAX8) do have representation on at least
some of the expression platforms, and yet were not identified as
differentially expressed in even a single study in our meta-analysis.
These genes may have displayed some differential expression but not
reached the required thresholds for inclusion in the published lists. Or,
they may represent cases in which changes in RNA levels do not
correlate well with changes in protein levels. Segev et al41 concluded
that large-scale thyroid tumor expression profiling of multiple mark-
ers on tumors from large and diverse patient cohorts are still required
to identify a panel of markers with sufficient sensitivity and specificity
to accurately diagnose indeterminate thyroid lesions. We agree and
believe that our meta-review of thyroid cancer gene expression profil-
ing studies provides a high-quality list of candidates from which to
identify such a panel.
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