DETERMINING THE OPTIMAL RT REGIMEN IN THE MANAGEMENT OF RECTAL CANCER

Objectives

Evidence: Short course vs Long course RT

2. The Optimal interval of RT to Surgery

Role of RT after Local Excision of Rectal Cancer

I: SHORT VS LONG RT

I: Short vs Long RT

"Short course" pre-op RT

25 Gy/5 fractions over 5 days, followed by surgery "within 1 week"

Biologically equivalent doses to fractionation given with 2 Gy per fraction in three most commonly use schedules of preoperative radiotherapy for rectal cancer

	Biologically equivalent doses to fractionation given with 2 Gy per fraction (Gy) ^a		
	25 Gy in five fractions of 5 Gy	45 Gy in 25 fractions of 1.8 Gy	50.4 Gy in 28 fractions of 1.8 Gy
Tumour control, $\alpha/\beta = 5$ Gy [23], time correction [8] ^b	35.7	28.1	30.4
Late damage, $\alpha/\beta = 3$ Gy	40.0	43.2	48.4

Long course pre-op KI

- 45-54 Gy/20-30 fractions over 4-5 weeks, followed by planned **break** of 6-10 weeks before resection
- Can be given with concurrent Chemotherapy

RT treatment volume:

BCCA Guidelines 2012

Stage1 T1-T2N0MO

Transabdominal resection (AR, LAR, APR): no adjuvant RT

Stage 2 T3N0: Referral to Radonc/ MedOnc: preop RT +- chemo

- Upper 2/3: non-fixed = 25Gy/5# and Sx within 10 days from D1RT
 (upper 1/3 with "predicted clear margins" may not benefit from RT)
- FIXED tumors
- CLOSE MARGIN mesorectum 45Gy/25+5.4Gy/3 + chemo + **Sx (6-10wks)**
- LOWER 1/3

Stage 3 T4 or any N1+M0: Referral to Radonc/ Medonc: preop RT+- chemo

- Upper 2/3: non-fixed = 25Gy/5# and Sx within 10 days from D1RT or CHRT
- FIXED
- CLOSE MARGIN mesorectum -45Gy/25+5.4Gy/3 + chemo + **Sx (6-10wks)**

1014/55 4 /0

Neo- adjuvant short RT vs Sx

Study	Eligibility	Stages-Sx	Arms	Results
Swedish NEJM 1997 Update 2005	Resectable 0-16 cm N = 1168	I-35% II-34% III-31%	5Gy x 5 +sx vs Sx	LRR 9% vs 26% (p 0.001) (HR 0.4) CSS 72% vs 62% (p 0.03)
FU = 13 yrs				OS 38% vs 30% (p0 0.008)
Dutch Ann Sx 2007 TME	Mobile 0-16 cm	I-33% II-30% III-36%	5 Gy x 5 +TME Vs TME	LRR = 5.6 vs 10.9% (HR0.49)
(no chemo) FU = 6 yrs	N = 1861		BUT R1CRM postopRT	CSS 75.4% VS 72.4% (NS)
			(50.4/ 30 given 52 / 96 pts R1	OS 64.2% VS 63.5% (NS)
				Mets 25.8% VS 28.3%

Neo- adjuvant short RT vs Sx

Dutch Trial Kusters, EJSO 2010

- Multivariate Cox regression LRR: randomization arm, tumor location, TNM stage, and CRM
- CRM +ve 16% both arms; 89% in T3/T4; CRM + 30% APR vs 11% LAR

DISTANCE FROM AV	TME	LRR RT+SX	LRR SX	P VALUE
0-5CM	65%	10.7%	12%	0.122
5-10CM	85%	3.7%	13.7%	0.001
10-15 CM	100%	3.7%	6.2%	0.578

CRM	5 yr LRR Sx	LRR RT+Sx	P value
+ve	23.5	19.7	0.393
-ve	8,7	3.4	< 0.001

In RT Arm: 56% of all LRR occurred in T < 5cm

Neo- adjuvant short RT vs Sx

Dutch Trial; Peeter Ann Sx 2007

CRM +ve: the most important predictors for LRR

"Discrepancies between colonoscopy measurements, CT and MRI and Intraoperative findings ...indicate the difficulty of determining exact tumor position and the a priori chance of local failure.

"These subgroup analyses provide limited support to withhold radiotherapy from patients with proximal rectal cancer or to apply a prolonged radiotherapy schedule for patients with distal rectal cancer"

Short course Pre-op RT

- Reduces the LRR by approximately 50%
- With TME: no difference DFS, OS

- Hypothessis:
 - most useful in mid-rectal tumors (imaging accuracy)
 - Enough in distal rectal tumors?
 - Enough with close surgical margins?

Neo- adjuvant Long course RT+- Ch

Study	Eligibility	Arms	Results
EORTC 22921 Bosset	N = 1011	I RT (45Gy/25) II CRT (+5FU/LVwk1/5)	ChT: ↓LF,↑ pCR, No chg DFS,OS
NEJM 2006	Ressectable	II: RT alone	
JCO 2007	T3/T4 0-15 cm	III: RT+adj chemo IV: CRT+adj chem	Strongest predictor OS = CRM+
FU 5.4 yrs			LRR
		Poor compliance	17% RT vs 8%-10% ChRT p 0.002
TME		post op CT (42%)	
advocated			DFS
1999 onward			RT 54% vs 56% chemoRT NS
			ChemoRT: APR 48% (NS)
			ChemoRT +CRM 5.4 vs 4.9% (NS)
			In ypT0-2: greater effect of adjuvant ChRT on DFS and OS

Neo- adjuvant Long course RT+- Ch

Study	Eligibility	Arms	Results
FFCD 9203 Gerard et a; JCO 2006	N = 762 Ressectable	RT (45Gy/25#) vs ChRT (5FU/LV wk1+5)	pCR 11.4% ChRT v 3.6% RT p 0.001 LRR 8.1% ChRT v 16.5% RT p< 0.05
FU 6.75 yrs (81mths)	T3/T4 Accessible DRE (mid-distal)	All had adjt RT (4 x q4wks 5FU/LV) Sx 3-10 wks post RT	PFS: 59.4% ChRT vs 55.5% RT NS 5-year OS rate 67.9% v 67.4% NS
			Grd3/4 acute 14.6 vs 2.7 p < 0.05 No diff APR No diff in distant mets

- ChRT greater pCR and improved LRR
- No difference in APR rates, metastasis, PFS or OS
- Increased acute toxicity with ChRT

Overall Addition of Chemo (5FU/LV bolus) to Long Course RT Ressectable Ca

- Chemotherapy effect: observed if concurrent or adjuvant
- Increases Downstaging effect: T stage, N stage, PNI, LVI
- Increases Local Control
- May not affect frequency of CRM + (not all TME)
- No effect on APR rates
- Did not affect metastatic rates, DFS, OS (pooled analysis 2 trials: EurJCa2012)

Addition of Chemotherapy increases acute toxicity not long term

Short vs Long-Course RT

Study	Eligibility	pCR/Sx and Toxicity	Results
Polish Bujko BJS 2006 Median FU 4yrs	N = 312 Ressectable T3/T4 Distal DRE	Compliance 97.9 SRTvs 69.2%ChRT pCR 0.7 vs 16.1(0.001)	No stat diff LRR, DFS, OS or APR rates LRR SRT 9vs CRT14%NS
Endpoint: sphincter preservation If mobile: ERUS or MRI or CT exclude T1/T2	Preop 20Gy/5 + Sx(7d) vs ChRT 50.4Gy/28# (bolus5Fu/LV wk1+5) + Sx 4-6wks Adjt (5Fu/LV) - 6 mths - 4 mths	CRM+ 12·9 vs 4.4% (p = 0.017) Acute Toxicity Grd III-IV 3.2% vs 18.2 (<0.001) Late Toxicity 28·3%vs27% (0·810)	APR: 38.8 vs 42 NS Dist mets:23 vs 26% NS DFS 58·4 vs 55·6 % NS 4yrOS SRT 67v 66%2NS

Cochrane Meta-Analysis 2009

Preoperative ChRT vs RT alone Stg II/III ressectable rectal cancer

4 RCT (EORTC Bosset, FFCD 9203 Gerard, Polish Bujko, Boulis-Wassif 1984)

No difference in DFS or OS

Chemotherapy improved

- **pCr**, ChRT 11.8% vs 3.5% (OR 3.65, p < 0.001)
- **LC** 16.5 vs 9.4%; (OR 0.53, p < 0.001)

No difference in Sphincter preservation

- ChRT 49.6% vs RT 47.6% (P = 0.29)

No diff Distant mets = 30% all arms; no systemic effect with current RT regimen

Morbidity:

- No difference peri- op risk 30 day mortality, postoperative morbidity, or anastomotic leak
- □ Higher acute toxicity: Grade III or IV ChRT 14.9% vs 5.1% (OR 4.1, P = 0.002)

TROG 2012: Short vs Long RT

Study	Eligibility	pCR & Toxicity	Results
TROG Ngan JCO Sep 24, 2012 Median FU 5.9 yrs ALL had MRI or EUS Minimum FU 3 yrs Endpoint: 3 yr LRR	N = 326 T3N0-N2 0-12cm Preop 20Gy/5 + Sx(3-7d) vs ChRT 50.4Gy/28# (inf5Fu/LVwk1+5) + Sx 4-6wks Adjt (5FU/FA) 6 courses (85%) & 4 (86%)courses	SIGN DWNSTG 28 vs 45% (0.002) pCR 1 vs 15% Mrg+ve 5 vs 4% (NS) Complications (w/i 3 mths) 53 vs 50% NS Late II/IV toxicity: 5.8 vs 8.2% NS	No stat diff LRR, DFS, OS or APR rates 3yr CumLRR SRT 7.5% Vs ChRT 4.4% NS <5cm: LRR 6/48 vs 1/31NS <5cm; APR 79 vs 77% NS 5 yr dist 27 vs 30% NS (p 0.89) 5 yr OS 74 vs 70% NS

Conclusions from TROG 2012 Short vs Long RT

- Small difference in LRR (3.1% at 3 yrs) in favour of ChRT BUT not statistically significant (trial required 8%)
- Distal Cancer (<5cm) despite a large observed difference LRR (favour LChRT); no statistical difference in LRR according to treatment arm
- Significant predictors of LRR: Resection Margin +ve; Lymph Node +; CEA level at diagnosis
- Greater pathologic downstaging with ChRT; but no effect on APR rate for distal tumors; no effect on margin status
- No significant difference in late toxicity at 3 yrs (grd ¾); no reports of severe neuropathy

II: DEFINING THE OPTIMAL INTERVAL FROM RT TO SX

Short Course RT:

BCCA: "Surgery within 10 days from D1RT

Long Course ChemoRT

BCCA: "Surgery within 6-10 wks post complete RT

Interval short course RT to Sx Stockholm III trial

Stockholm III	Arms and Characteristics	Toxicity	Subgroup analysis
Petterson, BJS; 2010 Interim analysis: -SE's, compliance -CT or MRI	N = 303 Locally ressectable; 0-15cm All Sx = TME RCT: 1. SRT(25/5); 1 wk Sx (118) 2. SRTds; 4-8 wks Sx (120) 3. LRTds(50/25);4-8wkSx (65)	No diff acute tox SRT = 0 SRTds 4.2% LRTds 5% No diff pst comp 46.6 vs 40 vs 32% (0.164)	SRT (118)post op complications: p= 0.036 < 10D (29/75) 39% 11-17d (24/37) 65% >17d (2/6) 33% APR 30 vs 33.3 vs 20% (p = 0.07)

- Post op complications NOT increased in SRT vs LRT with delayed Sx
- SRT immediate Sx: inc post op complications: > 10d from start RT
 (= wait > 3-5d to Sx) = Sx < 10 DAYS FROM START RT

Interval short course RT to Sx

Retrospective Series Stockholm

Study	Patients and	Ouctomes	Path response
Petterson;	N = 112	Post op compl	95% pre MRI
BJSx	Ressectable +	38.4% (= Stock III)	MRI vs PATH
2012	Unressectable		T2 11% vs 22%
		Severe RT toxicity	T3 42.2% vs 56%
Retrospect	Stg I 8% II 35%;	5.4%	T4 45.9% vs 14.7%
	III 45.5 IV 7%		
Jan 02-08			NO 45.8% vs 63.6%
MRI pre &	25Gy/5#		N1 26.2% vs 16.8%
post	CRM +ve of <=1mm		N2 28% vs 19.6
	Median time RT to Sx		CRM+ 50 vs 14.3%
	7 wks (4-17wks)		

- Signif diff in preMRI T stg vs pT < 0.001 and N stg 0.014 and margin < 0.001
- Acceptable toxicity = agrees with Stockholm III

Longer interval SRT

- Stockholm III will offer RCT evidence of effectiveness and safety of prolongued interval to SRT
- Prolongued Interval with SRT: increase path. downstaging
- Interval may predict complications: highest if 10-17 days from D1RT; > 17 days did not appear to increase morbidity
- ? Role of chemotherapy if prolong the interval with SRT

Interval Long course RT to Sx: STANDARD

```
Lyon Trial (BJS, 2003)
RCT RT followed by variable interval to Surgery (2 wks vs 6-8 wks)
N= 201
FU 6.3 yrs
```

- □ 1991-95: T2-T3N+ accessible by DRE
- RCT: 39Gy/13# Short Interval (2wks Sx) vs Long Interval (6-8 wks Sx)
- Long Interval 6-8 wks: clinical response, path dwnstg
- No diff morbidity, APR 68 vs 76%, LRR, (13 vs 10%) or survival (66 vs 69%)
- ☐ STANDARD INTERVAL following ChRT = 6-8 wks

Interval Long course RT to Sx: +ve studies

Study	Characteristics	Outcome
De Campos- Lobato; JGISx 2011 FU 4.21 yrs Retrosp Rev All MRI or ERUS	N = 177 II/III Neo-adj ChRT (50.4Gy/28#) +5FU < 8 wks (83) vs > 8 wks (94)	Increased pCR and LRR; No dif DFS or OS pCR 16.5% vs 30.8% (p = 0.03) No diff morbidity or complications; APR same 3yr LRR 10.5 % vs 1.2% (p = 0.04) 3 yr DFS 75.3 vs 84.7 (0.26) NS 3 yr OS 85.5 88.2 (0.74) NS
WoolthuisAnn Sx Onc 2012 FU 4.9yrs Prosp database	N = 356 Stg II/III Neo-adjt ChRT (45Gy/25#) +inf 5FU	Increased pCR and LRR and CSS pCR SI 16% vs LI 28% (p = 0.0006) No diff in morbidity or APR rates
Retrospective Review	SI < /= 7 wks (201)vs LI > 7 wks (155)	5 yr FFRR: 73% vs 83% (p = 0.026) 5 yr CSS SI 83% vs LI 91% (p = 0.046)

Interval Long course RT to Sx: -ve studies

Study	Characteristics	Outcomes
Lim Ann Sx 2008 2002-2006 FU 2.58 yrs All MRI+EUS Most TME (2% LE)	N = 397 0-9cm T3-T4orN+ ChRT: 50.4Gy+5.4bst Ch: 1)bolus5FU/LV (185) 2) Cape (140) 2) IC (72) GrpA: 4-6 wk(217) GrpB 6-8 wk (180)	No diff in dwnstg, CR, APR, LRR, or morbidity T-level dwnstg: A: 47.5% vs. B: 44.4%, NS pCR: A: 13.8% vs. B: 15.0%, NS 2 yr LRFS 95% vs 92% (0.116) Morbidiity 17 vs 15% (0.501)
Moore DisCRect 2004 All EUS	N = 155 T3TrN+ ChRT 50.4Gy+5FU Grp A < 6.3 wks (82) Grp B > 6.3 wks (73)	No diff pCR, dwnstg, trend inc complications pCR 12% vs 19% (P = 0.27) Dowstaging: 6 vs 15% (P = 0.11) More anastomotic compl (0 vs 7%) (0.05)

Longer Interval with ChRT > 8wks

- No RCT
- Hypothesis:
 - May increase pathologic downstaging
 - May improve LRR, no effect on DFS or OS
 - May not affect morbidity; possibility > 10 wks increases post- RT fibrosis

III: ROLE OF RT FOLLOWING LOCAL EXCISION OF EARLY STAGE RECTAL CANCER

BCCA Policy

- "Local, TAE of rectal cancer (including T1 lesions) has increased risk of recurrence compared to major resection"
- "LE may be considered pts medical comorbidities or where pts fully informed of negative oncologic aspects of LE"

BCCA "Low Risk T1NO lesions":

- Grd 1-2
- No LVI or perineural invasion
- Negative margins (at least 3 mm)
- < 3 cm size
- Mobile (non- fixed)
- Node negative on pre-op imaging

Rectal Cancer Staging

CT Chest (or CXR) CT A/P

Measurement: Rigid sig> flex sig/colon> EUS> DRE> MRI or CT

Local stage: ERUS or MRI (sensitivity/ specificity %)

Modality	T stg accuracy	N stg accuracy
СТ	50-74%	50-70%
MRI	66-91%	65-88%
EUS	80-95%	70-75%

CRM +VE PREDICTION: "threatened CRM" = within 2 mm \sim MRI 90-95% accuracy

- 149 pts: (49% EUS; 41% EUS + MRI; MRI 10%): if "free imaging" = 92% clear path
- If not assessed = 33% involved or threatened 44% CRM +ve

Stage 1

T1No- occult nodes 10-13%

T2NO- occult 17-22%

T1NO Rectal Cancer: Local excision alone

- Surgical technique: Transanal local excision (TAE) vs Transanal Endoscopic
 Microsurgery (TAEMS)
- T1NO: no Level I prospective randomized trials of local excision (LE) vs Standard Ressection (SR = AR, LAR, APR) or T1+-RT
- T1No- occult nodes 10-13% High Risk: LVSI +ve 23%; middle 1/3 11% vs distal 1/3 30%; Sm 1 8% vs Sm3 23% = depth of m. inv (Nascimbeni)
- Salvage Rates 20-60%

Author, year	Pts SR ;TAE	FU yrs	5 yr LRR (%) SR vs TAE	5 yr OS (%) SR vs TAE
Nascimbeni, 2004	74; 70	8.1	2.8 vs 6.6*	90 vs 72* (OS)
Bentrem, 2005	168; 152	4.3	3 vs 15 *	93 vs 89 (OS)
Nash, 2009	145; 137	5.6	2.7 vs 13.2 *	96 vs 87 (DSS)*
You, Nat Ca	493; 601	6.3	6.9 vs 12.5*	82 vs 77 (OS) You, SemRadonc 2011

T1NO Rectal Cancer: High risk Features +- RT

Trends T1N0 nodal risk:

- High: Grade 3; +ve LVI; =PNI; +ve margins; >4 cm = ↑ LRR, ♥ DFS, ♥ OS
- Technical: < 40% circumference, < 10 cm from AV

Addition of RT to LE in T1N0

- LIMITED: Retrospective bias, variable RT volume, RT dose, selection criteria
- Trend RT in high risk T1; trend RT ↑ LC and ↑ DFS ~ low risk T1 LE alone
- Late LRR in RT, no plateau in DFS, LRR associated mets, poor salvage rates

Meta-analysis of Addition of RT (Sengupta, Dis ColRect, 2001)

• LE alone (22 studies); LE +AdjtRT or Neo-adjt (19) (EUS 9/41)

Stage	LE alone (% LRR)	LE + neo/adj RT+- Ch (%LRR)
T1	9.7 (0-24)	9.5 (0-50)
T2	25 (0-67)	13.6 (0-24)
T3	38 (0-100)	13.8 (0-50)

Factors other than T-stage higher LRR after LE: Grade, LVSI, +ve margins

Local Excision +- Adjuvant ChRT

RTOG 8902	Pts	FU	Outcome
IJROBP 2000 Procto; CT (<2cm LN) 1989-1992	N = 65 < 4cm; < 40% circumf 1)Obs; grd1/2/M-ve (14 = T1) 2)RT + 5FU: M -ve (18) (T1 7/T2 8/T3 3) 3)HDRT +5FU: M <3mm (33) (T1 6/T2 17/T3 10)	6.1 yrs	Overall LRR 16% % (¾ LRR) 1) LRR 0.07% 2) LRR 11% 3) LRR 15% 5 yr OS 1) 90% 2)= 3) 75%

Failure	Arm 1	Arm 2	Arm 3	Total
LRR only	1	1	1	3
Distant only	1	0	2	3
Both	0	1	4	5

- Freedom from pelvic relapse: overall 88% and 86% in ChemRT
- LRR correlated with
 - T category T1 1/27 (4%); T2 4/25 (16%); T3 3/ 13 (23%)
 - Circumference: < 20% 2/31 (6%) vs 21-40% (6/34 (18%)

Stage 1: T1T2N0 +- Adjt ChRT

Level IIa: Prospective Non-randomized single- arm Clinical Trial

CALGB 8984	Pts	FU and Pt factors	Outcome
Greenberg DisCRect 2008 T1 and T2+adjt Proctoscope; CT 1990-1995	T1= 59; M-ve 10 cm prox dentate, < 4 cm < 40% circumf -proctoscope, CT OBSERVATION	7.1 yrs No grd 3 2% Lymp; 5% vasc + Mean diam 2.2cm	LRR = 8% Mets = 5% 5 yr DFS = 91% 10 yr DFS = 75% 10 yr OS = 84%
	T2 = 51 (2-6wks) Adjt ChRT RT 54Gy + 5FU(IV D1-3, 29-3)	12% grd3; 22%Lymp+ 22%V asc +	LRR = 18% Mets = 12% 10 yr DFS 64% 10 yr OS 66%

- T stage signif OS (p = 0.04) and approached DFS (p = 0.07)
- Nat Cancer Database Stage 1 TME: 5 yr DFS 93.4% (91-95.8) ~ comparable
- Salvage rates not clearly stated: Commentary: 8/19 ~ 42% LRR salvageable

T2N0: Neo-adjuvant ChRT + LE

RCT: ChRT followed by Transanal End. MicroSx (TEM) vs Lap ressection (LR)

Lezoche et al. Italian	Pts	Recurrences	Survival
Surg Endox 2008 Median FU 7 yrs TEM vs LR	N = 70 T2N0G1-2 6 cm from AV < 3 cm All ChRT (50.4Gy/28 + cont 5FU 200mg/m2/ day)	LRR: TEM 2 (5.7%) vs LR 1 (2.8%) (All poor path resp) Distant TEM= 2.8% = LR	"After ChRT; same long term probability of local control and survival in TEM vs LR"

- Downstg: p T0 32 and 29%; pT1 17 and 20%; PT2 51% both
- TEM less operative time, blood loss, and hospital stay vs LR (p= 0.001)

[&]quot;Reports shown T2 17% LRR overall after local excision alone"

THANK YOU